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Abstract

The fundamental mammalian behaviours of perception, recognition, categorisa-

tion, generalisation, and many other psychological phenomena are intrinsically

bound to the basic cognitive process of memory formation and association. While

many mechanisms for creating artificial associative memory exist, Hebbian Cell

Assemblies(CAs) offer a neurobiologically plausible means of doing so.

This thesis is an exploratory study of the dynamics of CAs and CA based

associative memory. It looks into how complex phenomena emerge from associa-

tive memories by modelling and simulating the cognitive processes of formation,

association, and retrieval of memories as CAs. From these elemental processes,

higher order behaviour are obtained, namely, emergent context sensitivity, spatial

cognitive mapping (modelled in an embodied virtual agent), and emergence of

novel behaviour (explored via an autonomous game playing agent). The thesis

also confirms that CAs are capable of performing real world tasks, with a natural

language processing model capable of resolving with better accuracy than many

symbolic machine learning models, the prepositional phrase attachment ambiguity,

a common syntactic and semantic ambiguity.

The results from the models are novel and manifold, hinting at a uni-

fied model of associative memory. They suggest that neurobiologically inspired

models—in particular, the CA model—may be better at performing certain AI

tasks than other traditional computational models. They also suggest the possi-

bility of a CA based associative memory model that may be able to account for

many higher order processes, and demonstrate how CAs can be used to model

tasks in AI that resemble processes in the brain.
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Chapter 1

Introduction

Trying to comprehend the emergence of intelligence in biological beings is a hum-

bling task. The field of artificial intelligence (AI) is a modern version of the age old

human quest for understanding the nature of intelligence, and thus selves. What

makes the mystery of intelligence even more confounding is that it emerges from

seemingly fundamental processes such as memory formation and association. It is

known that many higher cognitive phenomena arise from the interplay of human

memories that are encoded as large distributed networks of associations [Haxby

et al., 2001; LaBar et al., 1999; Squire, 1992]. For the same reason, understanding

and including associative memory mechanisms in artificial models of intelligence

is important. This thesis is the result of such an exploration.

Theories from different disciplines give varying accounts for human as-

sociative memory. Many such accounts hold varying views for the same set of

processes. Symbolism and connectionism are two such common views. Symbolic

models postulate that cognition evolves from symbols that can be stored, retrieved,

and transformed based on specific sets of rules [Newell, 1980]. On the other hand,

connectionist models propose a different view inspired by the nervous system,

where cognition is considered to emerge from dynamic networks of interconnected

nodes based on biological brain cells or neurons [Feldman and Ballard, 1982].

While symbolic systems facilitate information processing, on their own, they are

weak tools for understanding intelligence, as they incorrectly assume that hu-

mans are mere symbol processors. Humans perceive and manipulate symbols, but

the underlying processes are complex and not well understood. If humans were

mere symbol processors, for instance, the word apple would encompass no abstract

1



1. INTRODUCTION 2

“meaning” and would simply represent a symbol. Here, a symbol is considered

to be a discrete unit that can be used to denote a set of objects. While symbolic

systems are useful tools for studying high level cognitive behaviour, they do not

necessarily provide insights into the nature of biological intelligence [Bechtel and

Abrahamsen, 2002; Smolensky, 1987].

Connectionist models are large parallel networks of nodes inspired by bio-

logical networks of neurons in the brain. Such systems can perform a wide variety

of tasks, from financial predictions [Fadlalla and Lin, 2001] to analyses of protein

folding mechanisms [Rost, 2001]. In connectionist models, information processing

is done by the interaction of networks of individual nodes resembling biological

networks of neurons. Unlike symbolic systems, they allow modelling of cognitive

processes with fine and often neurobiologically realistic accounts. Such neurobi-

ologically inspired architectures are also good at performing many tasks in AI

[Fransen and Lansner, 1998; Huyck, 2001; Knoblauch et al., 2007; Levy and Horn,

1999; Valiant, 2005; Wennekers, 2007; Wennekers and Palm, 2000; Wickelgren,

1999].

The biological brain is capable of information reuse at very low levels. In-

formation learnt in one context can be automatically used in another. Perceived

stimuli such as audio, visual, and tactile information have complex abstract rep-

resentations in the brain that allow an individual to not merely perceive, but to

“understand” them. Such processes emerge from the interaction of a vast inter-

connected network of biological neurons. Still, many computational connectionist

models attempt to keep neurobiological influences to a minimum. For instance,

backpropagation networks [Hecht-Nielsen, 1992] for supervised learning are not

physiologically possible in biological neurons. It is also known that neurons do

not exist in a fully connected network in the brain where every neuron connects

to every other neuron, but in distributed circuits [Schüz, 1998], unlike many com-

putational models that rely on fully connected artificial neural networks (ANN)
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[Hopfield, 1982; Kohonen, 1982; Kosko, 1988; Willshaw et al., 1969]. While such

models may be good for solving computational problems, they may not necessarily

aid in understanding characteristics of intelligence.

On the other hand, computational models of Hebbian Cell Assemblies

(CA) [Hebb, 1949]—specialised circuits of neurons—provide a neurobiologically

and psychologically realistic framework for modelling associative memory, and

possibly, intelligence. Hebb [1949] considered CAs to be the neural basis of the

fundamental process of associative memory from which higher cognitive phenom-

ena emerge. This thesis explores many interesting properties of CAs such as their

formation that accounts for long term memories, reverberative behaviour that ac-

counts for short term memories, synaptic and overlapping associations that create

complex associative memories, competitive behaviour that supports categorisation

and other higher processes (discussed in Section 3.2 ) In the process, the work de-

scribed in this thesis demonstrates that the CA model is capable of performing

many different kinds of tasks ranging from machine learning tasks to psycholog-

ically plausible cognitive tasks. It also provides some insight into how certain

low level neural mechanisms in the brain may underpin higher mental processes.

While there are advanced systems—for example, ACT-R, the symbolic cognitive

architecture [Anderson, 1998]—that can model complex cognitive phenomena, this

thesis focuses on CA based associative memory and investigates how it may give

rise to higher order processes.

Associative memory is a fundamental cognitive process. In the brain,

memories are not encoded as discrete entities, but in large distributed networks

[Anderson and Bower, 1980]. Different ideas, concepts, and associations between

them are gradually acquired and integrated into a vast memory system. These

concepts and associations are critical to complex mental processes. Like many

cognitive processes, associative memory has a strong neural basis.

It is thought that concepts, ideas, and associations between them are en-
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coded in the brain as neural CAs. CAs exhibit dynamics that provide a unified

account for long term and short term memories that traditional models compart-

mentalising the two processes cannot. Associative memory in itself has a wide

range of properties. Concepts can have one to one, one to many, and many to

many relationships. Concepts can also vary in their nature, for instance, deriva-

tive abstract concepts and discrete tokens. Associations can also exist in different

forms such as hierarchical and contextual associations. They can also be of dif-

ferent types such as, abstract is a and has a relationships to higher level semantic

and spatial associations. How associations emerge from CAs, and in turn, how

certain fundamental higher order cognitive phenomena such as categorisation and

generalisation arise, are explored in this thesis.

A series of models that explore different aspects of CA based associative

memory, capable of performing a variety of tasks are developed. The objective

is to gain insight into the fundamental neural mechanisms underlying associative

memory, and to evaluate the viability of neurobiologically faithful computational

CAs for modelling complex processes. The exploratory nature of this thesis is

briefly described as a preamble in the next section.

1.1 Preamble

An inductive method is adopted in this thesis, where the cognitive processes of

memory formation, association, and retrieval in CAs and higher order phenomena

emerging from them are explored via computational simulations. While there

is a great deal of neurobiological data supporting these processes, their precise

dynamics are not well understood. For the same reason, the approach is highly

exploratory, somewhat arbitrary, and slightly unconventional.

The principal problem considered in this thesis is the emergence of “intel-

ligent” processes from associative memories. Such processes are numerous, indis-
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crete, and hence, poorly understood. So, a few such processes—while considerably

different from one another—are modelled in a reasonably neurobiologically faithful

framework for the purpose of exploring and construing their nature. The models

each demonstrate, the emergence of context sensitivity from an associative mem-

ory; spatial cognitive mapping with an associative memory; emergence of novel

behaviour from generalisation in an associative memory; and natural language dis-

ambiguation with a large associative memory of semantic data. Even though these

models are unrelated to each other, they all focus on, and are based on increas-

ingly complex CA based associative memories. The first two models associative

memories with synaptic associations, while the latter two study overlapping asso-

ciative memories. These two important types of associative memories on which

all the work described in this is based on, are discussed in Section 3.2.

While it is not practical to delve into expansive details of the processes

modelled, they are overviewed in some detail, and their models are described in

detail. Some of these models have also been published elsewhere [Huyck and

Nadh, 2009; Nadh and Huyck, 2010]. The key contributions of the work described

in this thesis is briefly summarised in the next section, and is discussed in detail

in Chapter 6.

1.2 Contributions

The findings from the models described in this thesis and their contributions

to the understanding of the nature of CA based associative memories is briefly

summarised below.

Context sensitivity can be implicit in the natural dynamics of an associative

memory of CAs. The behaviour of a CA, and the associative memory it is

a part of, can vary drastically based on the activity of CAs associated with

it. The model, described in Section 5.1, demonstrates a low level neural
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mechanism underlying context.

The sequential activation of CAs in an associative memory representing various

elements in an environment supports wayfinding, a form of spatial cognitive

mapping. The model, described in Section 5.2, shows an embodied agent in a

virtual 3D world performing a spatial cognitive task with such an associative

memory.

Generalisation can implicitly emerge from the inherent characteristics of an asso-

ciative memory of continuous, overlapping CAs. The model shows a virtual

agent learning to play a simple game of Pong autonomously or via human

supervision. The model is described in Section 5.3.

A large associative memory of overlapping CAs encoding semantic data is able

to perform a natural language disambiguation task with an accuracy that is

on par with statistical machine learning models that perform the same task.

The model makes use of complex semantic associations that are formed in its

associative memory to disambiguate sentences from a large English corpus

that are affected by the prepositional phrase attachment ambiguity. The

model is described in detail in Section 5.4.

The results from these four models are novel and multifold, and they

highlight the benefits of the strong neurobiological underpinnings of the computa-

tional CA model. More specifically, the findings demonstrate that the CA model

is capable of performing a variety of different tasks ranging from language dis-

ambiguation to spatial cognitive mapping. Furthermore, the models show how

complex phenomena can emerge from the fundamental CA associative memory

processes, hinting at the possibility of a unified model of associative memory, and

in part, AI.



1. INTRODUCTION 7

1.3 Structure

This section briefly summarises the rest of the chapters, outlining the thesis.

Chapter 2 provides background material and important concepts that support

the work described in this thesis, namely, human associative memory and

its neurobiology; ANNs in general; and some related computational models

of associative memory.

Chapter 3 discusses Hebbian CAs in detail. It covers their neurobiology, and

various dynamics exhibited by them. The chapter also discusses how CAs

provide a unified account for the fundamental processes of short term and

long term memory, and how they are central to higher order cognitive phe-

nomena such as perception, recognition, and recollection.

Chapter 4 describes in detail the neural network architecture with which the

models described in this thesis have been developed. It discusses the biolog-

ically inspired Fatiguing Leaky Integrate and Fire (FLIF) neurons that the

architecture is based on. The chapter also describes the learning algorithm

used in the architecture, and the processes by which CAs emerge in the

network.

Chapter 5 describes the models developed and their findings, highlighting differ-

ent capacities of CAs, namely emergent context sensitivity in CAs; spatial

cognitive mapping with CAs embodied in a virtual agent; emergence of novel

behaviour in CAs in a self learning game playing agent; and prepositional

phrase attachment ambiguity resolution with CAs, a natural language dis-

ambiguation task.

Chapter 6 discusses the outcomes and implications of the work described, and

briefly discusses prospects for future work.



Chapter 2

Background and related work

Many connectionist models, especially ANNs, have at least loose resemblances

with human associative memory. As mentioned in the introduction, connectionist

models unlike symbolic models, are neurobiologically inspired. Still, disparities

are prevalent between different models as discussed in the following sections. This

chapter overviews ANNs in general, various concepts of associative memory, and

reviews a selected few computational models of associative memory. It provides el-

ementary background information leading to CAs and CA based associative mem-

ory that are the focus of this thesis.

2.1 Artificial neural networks

ANNs are mathematical or computational implementations inspired by the bio-

logical brain that attempt to perform information processing like the brain itself.

Their architectures are generally comprised of networks of independent functional

nodes resembling biological neurons. Most ANNs are described by the connec-

tion topology of their nodes, the characteristics of individual nodes, and rules

that drive “learning” in them. The advent of such models can be traced back to

the infludential work of Lapicque [Brunel and van Rossum, 2008] from more than

a century ago. He proposed the integrate and fire neuron model which is still

extensively used in computational neural models. Later, the influential work by

McCulloch and Pitts [1943], followed by Hebb [1949], Minsky [1954], Widrow and

Hoff [1960], Rosenblatt [1962], and others paved the way to modern ANNs.

The McCulloch and Pitts model was based on a network of simple thresh-

8
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olded binary switches that received input from other switches. These switches

became active if inputs exceeded a critical threshold and remained quiescent other-

wise. These networks of switches were primitive abstractions of biological neurons

that paved the way to modern ANNs.

Rosenblatt’s perceptron—a slightly more sophisticated model, and one of

the first practical ANNs—learnt from examples and performed simple pattern

recognition and classification tasks. These eventually lead to the modern and

widely used ANNs such as self organizing maps [Kohonen, 1982], the Hopfield

network [Hopfield, 1982], and multilayer perceptrons [Rumelhart et al., 1986].

The model neuron in most modern ANNs is similar to the McCulloch and

Pitts neuron, a fundamental thresholded unit capable of receiving and transmitting

signals. Such a simple neuron in a network receives inputs from other connected

neurons. If the sum of the inputs exceeds the neuron’s threshold, it becomes

active or “fires” by setting its output to one, and zero otherwise. These two states

enable the neurons to perform simple binary classifications of linearly separable

problems [Krogh, 2008]. The firing behaviour in such neurons is an abstraction of

the firing behaviour of biological neurons [Bevan and Wilson, 1999] by which they

transmit electric potential via their outgoing connections. More complex ANNs

take into account the properties of biological neurons such as dynamic thresholds

and spiking behaviour [Izhikevich, 2003; Maass and Bishop, 2001]. Many such

ANNs are based on the Hodgkin-Huxley neuron model, the landmark work of

Hodgkin and Huxley [1952]. Their model mathematically describes the chemical

processes in a biological neuron that account for its elementary properties. The

FLIF ANN used in this thesis (Chapter 4) encompasses many characteristics of

biological neurons such as integrate and fire behaviour, leaking of potential and

fatiguing.

ANNs have been applied to a variety of computational problems, with

most applications concerning their inherent capacity for pattern recognition [Bishop,
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1995]. This important feature of ANNs is commonly used to discover implicit un-

derlying patterns in poorly understood data, such as weather forecasting [Kuligowski

and Barros, 1998] and financial prediction [Fadlalla and Lin, 2001]. Similarly,

ANNs are able to work with noisy and partial information unlike discrete sym-

bolic systems. Such properties of ANNs are what are generally classed as “intel-

ligent”. While ANNs are neurobiologically inspired, most models are not faithful

implementations of biological systems. There are also large disparities between

different models due to the lack of a unified framework and definitive knowledge

of the dynamics of biological neural systems [Basheer and Hajmeer, 2000]. While

such ANNs are versatile, they are limited in their abilities to perform complex,

and ultimately, human like tasks such as complex decision making. Nonetheless,

ANNs are becoming increasingly sophisticated, with many models having neurobi-

ologically realistic characteristics being used for modelling cognitive phenomena,

for example, complex associative memories and cognitive mapping [Botvinick and

Plaut, 2006; Fransen and Lansner, 1998; Garagnani et al., 2009; Samsonovich and

Mcnaughton, 1997]. Ultimately, most ANNs are intricate tools for problem solv-

ing, and some, the means of exploring the nature of intelligence.

2.2 Associative memory

Human associative memory is a remarkably complex process that underpins many

cognitive phenomena. It continues to develop throughout an individual’s life,

where new concepts are acquired, learnt, associated, recalled, and purged. Such

a memory is not a disjoint islands of events, experiences, and images, but a com-

plex network of vast collections of memories. This network is woven together by

the continuous modification and organisation of personal experiences and factual

knowledge that an individual acquires. Functionally, human associative memory

is a heteroassociative memory, as it is a large collection of concepts with relation-
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ships of varying degrees of complexity, as opposed to an autoassociative memory

that does not account for associations between different representations.

Any given concept in an associative memory can be associated with many

other concepts, and the retrieval and modification of concepts may depend on cri-

teria such as content and context. There may also be a wide range of types of as-

sociations between concepts. For instance, associations between factual concepts

in the human associative memory may vary by strength of physical association

and extent of feature overlaps [Tulving and Markowitsch, 1998]. The ubiquitous

involvement of associative memory in many important aspects of conscious in-

telligent behaviour in humans, from perception and recognition to more complex

decision making, may be considered a testament to the critical role it plays in the

emergence of intelligence. Hence, it is only reasonable to assume that to create

human like AI, computational models should have a strong basis in associative

memory.

Associative learning, and thus, the mechanism of learnt association was

notably demonstrated by the Russian physiologist Ivan Pavlov [1927] with his

famous conditioning experiment, popularly known as the Pavlovian conditioning

experiment. In the experiment, Pavlov presented his dogs with a ringing bell, and

food shortly thereafter, repeatedly over many days. This repeated co-presentation

of food and the ringing bell caused the dogs to associate the two stimuli. As a

result, the dogs started salivating at the sound of the ringing bell, even when food

was absent. It was proposed that if associative memory can be induced in animals,

it is only reasonable to assume that similar processes may reside in the human

brain.

Modelling associative memory in artificial neural networks is an important

step in simulating intelligence [Pershin and Di Ventra, 2010], but models capable

of simulating these processes are not common and usually incomplete. A model

inspired by Pavlov’s conditioning experiment is described in Chapter 5. It demon-
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strates how the cognitive process of context sensitivity can implicitly emerge from

the associative learning of CAs.

In humans, associative memory is considered to have two major compo-

nents, procedural memory and declarative memory [Tulving, 1985]. While these

two systems overlap considerably, the classification is based on their observed

nature. There is a large body of evidence that supports this division [Cavaco

et al., 2004; Cohen et al., 1997; Molinari et al., 1997; Ullman, 2004; Ullman et al.,

1997]. Even though these are independent systems, they interact with each other

in carrying out various tasks. Procedural memory or how to memory is composed

of implicit memories that do not require conscious recollection. For instance,

the acquired skill of riding a bicycle or a similar skill learnt by repetitive practice

manifests the action in realtime without conscious recollection. Such memories are

non-propositional by nature [Tulving, 1985]. It is usually referred to as implicit

memory for the same reason, as the learning process and the learnt knowledge are

mostly unconscious. Aspects of Pavlovian conditioning, mentioned earlier, may

be a part of procedural memory [Poldrack and Packard, 2003]. On the other hand,

declarative memory concerns learning, organising, and using facts and events. The

brain regions corresponding to declarative memory are well studied, and it is better

understood than procedural memory [Eichenbaum, 2000; Squire, 1992].

A real world event experienced and learnt by an individual has many

details such as spatial, audio, visual, tactile, and linguistic information. The rec-

ollection of such an event from memory involves pulling together a number of

details from different regions of the brain concerning their perceptions, and com-

piling into a coherent representation that can be consciously interpreted [Cohen

et al., 1997]. This is facilitated by the interaction between different brain regions.

This highly distributed and interconnected nature of memories that encompasses

various relationships between encoded concepts make them highly relational in

nature [Cohen et al., 1997]. Activation of certain memories in such a network may
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cause activation of other related memories based on many given factors such as

context. This dynamic nature makes the memory system highly flexible, scalable,

and capable of rapidly adapting to novel scenarios. CAs encompass such dynamics

by nature, and hence, are considered to be the neural basis of associative memory.

The neurobiology of CAs and their various properties are discussed in detail in

Chapter 3.

The two subsystems of declarative memory—episodic memory and seman-

tic memory–are attributed to episodic and factual knowledge respectively [Tulv-

ing and Donaldson, 1972]. Most computational AI systems borrow characteristics

from declarative memory, as attempts of modelling intelligence are usually based

on systems capable of acquiring and manipulating factual knowledge. The models

described in this thesis (Chapter 5) mainly encode semantic memories. Many ma-

chine learning systems that do not resemble biological associative memory are also

based on similar concepts [Kolen and Pollack, 1991; Stainslaw Jankowski, 1996].

Hence, understanding declarative memory, especially semantic memory is impor-

tant to modelling associative memory. The following subsections discuss episodic

and semantic memories further.

2.2.1 Episodic memory

Episodic memory is the comprehensive autobiographical catalogue of personal ex-

periences and events. Tulving and Thomson [1973] described it as “concerned with

storage and retrieval of temporally dated, spatially located, and personally expe-

rienced events or episodes, and temporal-spatial relations among such events”. It

is highly personal and intrinsically bound to an individual’s “self” and its percep-

tion of time. While episodic memory and semantic memory interact in complex

ways, items in episodic memory are not well remembered compared to the factual

knowledge in semantic memory. This is because stimuli processed semantically

are better remembered than those processed merely perceptually [Kapur et al.,
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1994]. This may be why episodic memories are often not as intricate as semantic

memories and are prone to interference [Tulving and Donaldson, 1972].

Episodic memories, being personal in nature, also have strong emotional

bindings. Formation and consolidation of such memories are affected by emotional

states, and recalling of episodic memories may evoke emotions. For instance,

Brown and Kulik’s [1977] so called flashbulb memories are unusually vivid circum-

stantial memories—detailed snapshots of moments of time—whose formation is

triggered by heightened levels of emotion and states of consequentiality. A canon-

ical example cited by many is the vivid recollection of the moment of learning of

the assassination of President Kennedy. While Brown and Kulik [1977] proposed

a specialised mechanism responsible for creating such vivid memories, it is known

that such memories are a characteristic of episodic memory [Davidson and Glisky,

2002; McCloskey et al., 1988]. It is such characteristics that differentiate episodic

memory from semantic memory which is more general purpose in comparison.

Due to this nature of episodic memory, in AI, it is seldom applied to general tasks

and often limited to computational models of embodied intelligence [Dodd and

Gutierrez, 2005; Ramamaurthy et al., 2004; Rickel and Johnson, 2000].

2.2.2 Semantic memory

Semantic memory encodes information pertaining to facts, concepts, meanings,

and the relationships between them. It is a vast encyclopaedia of conceptual

knowledge whose constituents range from abstract concepts to symbolic infor-

mation such as names of people and places. It facilitates the rapid acquisition,

organisation, and retrieval of such information in real time. The role of semantic

memory in human intelligence is ubiquitous, as such factual information is exten-

sively used in higher cognitive process such as decision making and language. It

is critical to intelligence and manifests the fundamentals of an individual’s inter-

action with the environment. For instance, subjects with damage to the brain
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regions associated with semantic memory are unable to do basic tasks such as

object recognition and naming, eventually leading to severe problems in language

comprehension [Hodges et al., 1992].

There is evidence that different categories of perceived objects elicit simi-

lar activity in the brain regions that correspond to the perception of those objects.

These regions have also been observed to be consistent across different subjects.

Objects with specific feature sets such as man made tools associated with move-

ment in space may have their features encoded in different regions that concern

visual, linguistic, and motor movements [Le Clec’H et al., 2000]. Such regions

have been found to elicit similar activity when subjects do naming tasks, write

about the objects, or simply think about them. This suggests that these processes

involve retrieval of learnt information of specific attributes and features of differ-

ent objects that are distributed and co-operative in nature [Kreiman et al., 2000;

Martin and Chao, 2001; Vandenberghe et al., 1996].

Such distributed organisation of knowledge resembles semantic networks,

a high level knowledge representation scheme. A semantic network is a graph,

where concepts are represented as vertices and relationships between them as

edges [Quillian, 1967]. This resemblance is interesting, as semantic memory in its

simplest form may be considered a semantic network. Figure 2.1 shows an example

of a simple semantic network with a small group of interlinked concepts, where the

links specify their relationships. What constitutes the encyclopaedic knowledge

of the environment in an individual is the vast underlying network of abstract

concepts, instances of concepts, categories, and relationships between them—all

associated coherently and recollected at will.

Semantic memory is an immensely complex system with a number of

modalities. While its high level behaviour is well studied—mostly through vi-

sual and semantic recognition, association, and recollection tasks [Federmeier and

Kutas, 2001; Moss et al., 1995; Warburton et al., 1996]—its low level characteris-
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Figure 2.1: A simple semantic network

tics are not well understood and warrant further research. Given a large number

of examples of an object, an abstract representation of it gradually emerges im-

plicitly. This representation may be categorical in nature. For example, given a

number of apples of different colours, shapes, and sizes, an abstract concept that

represents an apple emerges that then aids in recognising and classifying apples

with novel characteristics. This emergent behaviour seems to be an inherent prop-

erty of associative memory. There is evidence that there is a dissociation in the

brain regions that represent such abstract knowledge and information of specific

instances [Beauregard et al., 1997; Kiehl et al., 1999; Mummery et al., 1998; Vin-

son et al., 2003]. For instance, the visual memory of a particular object may be

neuroanatomically different from the abstract category it belongs to. Such char-

acteristics are modelled in CAs in a simulation (described in Section ??), where

emergent semantic relationships in a large associative memory are used for natural

language processing. While it is difficult to quantify these associations, the model

provides some insight into their nature.
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2.3 A review of related computational associa-

tive memory models

The number of ANNs applied to a wide range of problems is staggering. However,

general purpose models are few, as many are localised to specific domains. While

it is difficult to compare all such systems, this section discusses in some detail,

four widely used ANN models of general associative memory. These ANNs are

discussed in contrast to the computational CA based ANN used in this thesis

(Chapter 4). Some mathematical details of learning in these ANNs are presented

so as to highlight the similarities and differences with the ANN used in this thesis.

While these ANNs are powerful tools capable of modelling associative memories of

varying complexities, the work described in this thesis demonstrates that the CA

model with its strong neurobiological underpinnings provides a range of dynamics

that are able to account not just for complex associative memories, but higher

processes emerging from them.

2.3.1 The Hopfield network

The Hopfield network [Hopfield, 1982] is a widely used autoassociative ANN. As

an autoassociative network [Bishop, 1995], it is able to recall a stored pattern

upon being presented with the same pattern or a partial version of it. It is a fully

connected network of simple neurons—binary threshold units—with symmetric

bidirectional connectivity, that serves as a content addressable memory. The

model neuron in the Hopfield network is a simple unit that can have one of the

two states, firing or inactive. The state si of a neuron i is the only value it can take

and is usually either 1 or 0, or, 1 or −1. Neurons in the network connect to every

other neuron but themselves with symmetric connection strengths or “weights”.

As a result, the Hopfield network does not have distinct input or output neurons

and every neuron acts as an input and output. Figure 2.2 shows an example
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network with two neurons i and j, where W is the weight matrix which is the

collection of all individual connection weights between neurons, and wij = wji.

j

wji = 1

wij = 1

Wi

Figure 2.2: An example Hopfield network with 2 neurons

The neurons in the network usually update their states synchronously and

each neuron retains its state until it is updated. Equation 2.1 shows the state si of

a neuron i, where wij is the connection weight of the neuron i from neuron j, sj is

the state of the neuron j, and θi is its threshold. By the rule, patterns presented

to the network eventually converge to a global “stable state”. This resembles the

formation of Hebbian CAs (Section 3.1). Such stable states are called attractors

(further discussed in Section 3.4 in the context of CAs).

si =

1
∑

j wijsj ≥ θi

0
∑

j wijsj < θi

(2.1)

At any instant, the network has a collective state that can be represented

as a vector s. In the example in Figure 2.2, the network can have two stable states

depending on the two possible values the weight matrix can have. If wij = 1,

s = (1, 1) or s = (0, 0). If wij = 0, s = (1, 0) or (0, 1). The network is trained by

presenting it with a pattern, where the values of neurons are set externally to the

corresponding pattern. After many iterations, the network converges to a stable

state, where the pattern is stored in the network’s weight matrix. Subsequently,

when presented with the same pattern or a variation of it, the network should

settle to the previously attained stable state, performing a pattern recollection.
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This is the fundamental process that facilitates pattern recognition in the Hopfield

network.

Every network state in the Hopfield network has an “energy” associated

to it. The network behaves in such a way that with each iteration, it tries to

minimise its energy so as to converge to a local minima. When the network is

presented with a pattern, and it converges to such a state of minimal energy, it is

considered to have attained a stable state. The energy E of the network is given

by Equation 2.2.

E = −1

2

∑
ij

wijsisj (2.2)

Hopfield networks have been used for numerous tasks ranging from classic

computer science problems such as the theoretical Travelling salesman problem

[Hopfield and Tank, 1985] to image processing [Paik and Katsaggelos, 1992]. They

are widely used for image processing tasks, especially, optical character recognition

(OCR). For example, a 9 × 9 black and white pixel image of the letter C can be

applied directly as a pattern to a 9× 9 Hopfield network, where every white pixel

can be considered to have the state 0, and every black pixel, 1. During training,

the image, essentially a large pattern, converges to a stable state in the network.

If the same image or a partial version of it is then presented to the network, it

should converge to the stable state attained earlier or one close to it, effectively

recognising the original form of the image. Figure 2.3 illustrates this example,

where the original image and a corrupt version of it that may recall the original

image, are shown. Every cell represents a single pixel in the image and also a

neuron in the network. Black cells represent firing neurons (1) and white cells

represent inactive neurons (0). The pattern corresponding to the original image

that is presented to the network is also shown.
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Original image Corrupted image

0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0

Figure 2.3: A visualisation of optical character recognition in a Hopfield network

2.3.2 Bidirectional associative memory

Bidirectional associative memory (BAM) [Kosko, 1988] is a recurrent heteroasso-

ciative ANN. It contains two “layers” of neurons X and Y where the connectivity

of the neurons are bidirectional. The neurons are simple binary units that gen-

erate the output value of +1 if they fire, and −1 if they are inactive. The two

layers in the network transmit information back and forth and act as either input

or output layers depending on the direction of information propagation. That is,

if an external pattern is presented to X, X acts as the input layer and Y as the

output layer, and vice versa.

As a heteroassociative memory, the network is able to associate two dif-

ferent patterns with each other, as opposed to an autoassociative memory like the

Hopfield network that can only perform single pattern recalls. That is, the network

encodes pattern pairs that after learning, when presented with one pattern of a

pair, results in the recollection of the other. In addition, the network can also act

as an autoassociative memory. Figure 2.4 illustrates an example BAM network.

The network is fully connected, and X and Y are the two layers with m and n

neurons respectively. The number of neurons in the two layers need not be equal.

Like in the Hopfield network, the connections are bidirectional—wxiyj = wyjxi
.
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X Y

x1 y1

x2 y2

xm yn

Figure 2.4: An example BAM network

When a pattern is presented to X, it sends computed information to the

output layer Y . The output layer then transmits the results of computations from

it back to X. This process is repeated until the network attains a stable state

when information transmitted back and forth stops changing. Like the Hopfield

network, patterns are stored in the network in a weight matrix W . To encode

and associate a pair of patterns in the network, they are applied to X and Y

respectively. If there are N pairs of patterns, and xi and yi are such a pair, the

weight matrix encoding them is shown in Equation 2.3. Here, x and y are row

vectors, and t denotes their transposition.

W =
N∑
i=1

xi
tyi (2.3)

After training, any pattern xi applied to the input layer X, should produce

the corresponding yi in the output layer Y , or vice versa. When a novel pattern

is presented, the network outputs the closest output pattern. Thus, the BAM

network is capable of storing patterns with simple one to one associations.
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2.3.3 Self organizing maps

Kohonen’s [1982] self organizing maps (SOM) are feedforward ANNs that do un-

supervised learning. The SOM network consists of an input layer and a Kohonen

layer or output layer. Unlike the Hopfield Network or BAM, the output in the

SOM network is derived from a single neuron in the output layer based on a “win-

ner takes all approach”, where neurons compete for activation. The output neuron

is determined by the internal state of the network and does not need to be speci-

fied externally—hence, unsupervised learning. The activations of the neurons are

continuous and are usually between 0 and 1. The network functions by organising

its state into specific topologies, given large input patterns. When presented with

a novel input pattern, the neuron closest to its topology in the state space fires.

The network adapts to this in such a way that its weights are proportional to

the “closeness” with the winning neuron, encoding the input pattern. This self

organisation bears resemblances to the formation of CAs via Hebbian learning.

Figure 2.5 shows an example SOM network with an input layer X with

two neurons and an output layer Y with four neurons. The input neurons are fully

connected to the output neurons, but the output neurons do not have connections

among themselves. Information flows in a single direction in the network, from

the input layer to the output layer. If an input pattern P , for example P = (0, 1),

is applied to the input neurons, the output layer may organise itself in such a way

that neuron y1 fires. Similarly, for an input P = (1, 0), the neuron y3 may fire. By

the dynamics of the network, every time these inputs are presented, the weights

of the neurons in the output layer are adjusted so that they move closer to the

input patterns, subsequently resulting in the firing of a single neuron closest to

the pattern.

Given P , training the network involves setting arbitrary weights to all

neurons, where wij represents the connection weight between neurons i and j. The

winning neuron is then determined based on Equation 2.4, where dij represents
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Input layer (X)

Output layer (Y)

y1 y2

y3 y4

x1 x2

Figure 2.5: An example SOM network

the neuron with the minimum distance from the input pattern.

dij =

√∑
i∈Y

(Pi − wij)2 (2.4)

The neurons in the neighbourhood of the winning neuron are adjusted

closer to the input pattern based on Equation 2.5, where η is a dynamic learning

constant that degrades (approaches 0) over time. The neighbourhood may be

the radius from the winning neuron determined based on the topography of the

network. These steps are repeated until the network is considered to have attained

convergence depending on the properties of the input pattern.

wij t = wij t−1 + η(Pi − wij t−1) (2.5)

SOM networks are generally applied to machine learning tasks in AI. They

are extensively used for data mining and classification of complex datasets [Vesanto

and Alhoniemi, 2000] due to their ability to organise large multi-dimensional data

into smaller spaces. Like the Hopfield network, they are also used in image pro-

cessing. If a network is trained with an input pattern representing the pixels of
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an image of the letter C, a single neuron in the output layer will fire, representing

C. In the future, a partial input representing the same letter may cause the same

neuron to fire based on similarity, performing letter recognition. The network may

be trained with patterns representing all 26 letters in the English alphabet, where

26 output neurons will represent each of the letters.

Kohonen’s SOM network is inspired by self organising processes thought

to be in the brain [Kohonen, 1990]. CA formation may be considered such a

process. However, standard SOMs are not suitable for modelling complex asso-

ciative memories. They are inherently unable to do heteroassociation, a primary

characteristic of complex associative memories. Processing in the SOM network

is dependent on its fully connected topology that is unlike the topology in the

brain [Schüz, 1998]. Like the Hopfield network, the simplistic neurons in the SOM

network have some properties of the biological neuron that influence learning in

the brain. The ANN described in this thesis encompasses many such properties

of the biological neuron. Chapter 4 discusses these in detail.

2.3.4 Adaptive resonance theory network

The adpative resonance theory (ART) network, developed by Grossberg [1976] and

Carpenter [1987], is an ANN model based on Grossberg’s ART theory of human

cognitive information processing. The ART model describes multiple ANNs with

varying capabilities such as ART2 [Carpenter and Grossberg, 1987] that supports

learning of continuous patterns, and ART3 [Carpenter and Grossberg, 1990] that

encompasses basic aspects of neurotransmitters found in the brain. ART is dif-

ferent from the models discussed in previous sections, as it is inspired by ideas of

cognition. It supports certain cognitive processes such as context sensitivity.

The basic ART network does unsupervised learning and consists of two

layers of neurons, an input layer or the comparison layer and an output layer or

the recognition layer. In addition to the two layers, there is a reset mechanism.
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Neurons in the two layers are fully connected with each other and thus have strong

feedback links. The back and forth connections between the layers are different

from each other—connections from the input layer are known as bottom up links,

and connections from the output layer to the input layer are known as top down

links. This is inspired by cognitive processes in the brain thought to be of a similar

nature [Grossberg, 1976].

Output layer

Input layer

Input

Reset

Figure 2.6: Basic architecture of the ART network

Figure 2.6 shows the basic architecture of the ART network. The reset

mechanism is a symbolic module that heavily influences the system. In the net-

work, the input layer takes an input pattern and propagates the resultant activity

to the output layer. This activity is stored in the weight matrix as the long term

memory representation of the input pattern. The activation ai of a neuron i in

the output layer with a connection from neuron j in the input layer, provided a

pattern P to the input layer, is given in Equation 2.6, where wij is the connection

weight and Pi is a component of the input pattern.

ai =
∑

wijPi (2.6)
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Subsequently, like the SOM network, the output is derived from a single

neuron in the output layer, decided based on a winner takes all strategy. Acti-

vation of the winning neuron in the output layer is then fed back to the input

layer. The reset module compares this activation with the original input against a

vigilance threshold (ρ)—a value between 0 and 1 that dictates how general or fine

grained categorical representations should be in the output layer. If the compar-

ison exceeds ρ (r > ρ), the input pattern is considered to have been categorised.

This is known as the vigilance test. The value of r is given by a∑
Pi

. If r < ρ, the

neurons in the output layer are searched to find the closest match to the input. If

no such neuron is found, a new categorical representation for the input is formed

in the output layer. The network is considered to “resonate” when it learns a

categorical representation for an input pattern on passing the vigilance test.

The self organising behaviour in the ART network is similar to that of

the SOM network and CAs. The network learns from inputs and autonomously

categorises them based on their hidden characteristics. Hence, it is extensively

used for categorisation tasks [Gan and Lua, 1992; Song et al., 1999].

Sequitur

The previous sections briefly discussed a few widely used computational models of

associative memory. While they are versatile tools used for many AI tasks, they

are not good at accounting for many dynamics of complex associative memories.

The “neurons” in these models are rudimentary abstractions that bear little re-

semblance to the biological neuron. Also, the fully connected networks in these

models are unlike the connectivity of neural networks in the brain [Kangas et al.,

1989; Schüz, 1998]. Due to their topology dependent learning mechanisms, they

are unable to make use of connection topologies thought to be in the brain [Koenig

et al., 2005] that may underlie processes supporting memory. For instance, while

the brain is thought to encode associative memories via synapses and physical



2. BACKGROUND AND RELATED WORK 27

overlapping of memories (discussed in Section 3.2.4), these models are only capa-

ble of simple synaptic associations.

Being an autoassociative memory, the Hopfield network is unable to rep-

resent associations between different patterns, unlike human associative memory

that encodes many complex associations and relationships between memories. The

standard SOM and ART networks are distinct in their way of encoding memories,

but do not account for heteroassociative memories. While BAM is heteroassocia-

tive, it is limited in its ability to encode multi-associative memories, as it can only

encode pattern pairs. Even though the SOM and ART networks are inspired by

the self organising processes thought to be in the brain [Kohonen, 1990] such as

the formation of CAs, they are limited in their ability to form complex associative

memories. The ART network, although influenced by cognitive processes, lacks

neurobiological plausibility. For instance, learning in the network is driven entirely

by the symbolic reset mechanism. Extensions of some of these models have been

introduced so as to address certain shortcomings [Hagiwara, 1990], but they do

not necessarily unify diverse dynamics.

It is important to consider these shortcomings that arise from the lack of

neurobiological bases. While these models are excellent tools for various tasks, it

is reasonable to assume that a model that can offer a unified account for many

of the observed properties of associative memory systems may be better for many

AI tasks. Properties of biological neurons such as fatiguing and decaying may aid

in the graceful “forgetting” of memories, an important characteristics of human

associative memory and learning. A unified model of associative memory that

encompasses such characteristics may help bring together various facets of the

human associative memory that constitute intelligence. As is shown in this thesis,

the FLIF ANN used for modelling CA based associative memory (Chapter 4)

offers dynamics stemming from neurobiologically inspired properties such as decay

and fatiguing of neurons that are able to account for many such properties. The
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different associative memory models developed using the ANN (Chapter 5) support

this prospect. It is not the goal of this thesis to discourage other models, but to

explore the CA model of associative memory as a strong candidate for modelling

in AI.

2.4 Chapter summary

This chapter provided the background material and important concepts that sup-

port the work described in this thesis. It briefly discussed ANNs in general, and

provided an overview of various facets of human associative memory and its neuro-

biology. It also reviewed four related computational models of associative memory

models in detail, in comparison to the CA model and the FLIF ANN the work

described in this thesis is based on. The next chapter examines Hebbian CAs in

detail, discussing their neurobiology, general characteristics, and the mechanisms

by which they form associative memories.



Chapter 3

Hebbian cell assemblies

Hebb [1949] proposed the idea of CAs—reverberating circuits of neurons in the

brain that are considered to be the neural basis of concepts—in his seminal book,

The Organization of Behavior. It served as an impetus to the interest in neuropsy-

chology in the second half of the twentieth century that continues today, greatly

influencing the modern field of cognitive neuropsychology. The hypothesis also

inspired many computational models of AI, especially the idea of attractor neural

networks [Amit, 1989]. Attractor neural networks are powerful tools for modelling

a wide range of tasks [Belavkin and Huyck, 2010; Byrne and Huyck, 2010; Fransen

and Lansner, 1998; Garagnani et al., 2009; Huyck, 2001, 2008; Huyck and Nadh,

2009; Knoblauch et al., 2007; Wennekers, 2007, 2009; Wennekers and Palm, 2000;

Wickelgren, 1999]. The ANN described in this thesis (Chapter 4) is such a system.

The CA hypothesis was radically different from previous accounts of in-

formation processing in the brain, as it suggested that not individual neurons, but

certain higher processes emerging from the interplay of large networks of neurons

give rise to higher order psychological phenomena such as memory [Elman, 1991;

Milner et al., 1998]. Computational CA models are based on this principle and

may provide added benefits for modelling neuropsychological tasks.

Though Hebb merely hypothesised the existence of CAs, there is now

extensive research suggesting their presence and their role in giving rise to higher

order cognitive phenomena [Engel et al., 1991; Funahashi, 2001; Fuster, 1999;

Harris, 2005; Hauk et al., 2004; Kelso et al., 1986; Maurer et al., 2003; Molnár

et al., 2008; O’Neill et al., 2008; Pasupathy and Connor, 2002; Peyrache et al., 2010;

Plenz and Thiagarajan, 2007; Pulvermuller, 1999; Sakurai, 1998; Spatz, 1996].

29
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This chapter provides a detailed overview of CAs and their neurobiology—how

they inherently support associative memory, and some of their characteristics that

shed light on the underlying mechanisms that cause the emergence of higher order

phenomena. The background information discussed in this chapter is meant to

provide an understanding of the fundamentals on which the work described in this

thesis is based.

3.1 Neurobiology of CAs

In the brain, objects, ideas, and abstract concepts are represented not by indi-

vidual neurons, but by groups of simultaneously active neurons with high mutual

synaptic strengths [Wennekers and Palm, 2000]. CAs are central to associative

memory as they, by nature, represent stimuli encoded in groups of neurons. The

CA theory postulates that CAs are formed by a Hebbian learning rule, whereby

modifications in the synaptic transmission efficacy are driven by the correlations in

the firing activity of pre-synaptic and post-synaptic neurons [Gerstner and Kistler,

2002]. In Hebb’s words:

“When an axon of cell A is near enough to excite cell B or re-

peatedly or persistently takes part in firing it, some growth process

or metabolic change takes place in one or both cells such that A’s

efficiency, as one of the cells firing B, is increased.” [Hebb, 1949]

That is, if two neurons A and B co-fire, where A is the pre-synaptic

neuron transmitting a signal to the post-synaptic neuron B, the strength of the

transmission synapses or the mutual synaptic strength increases. This is known

as the Hebbian learning rule.

When neurons are quiescent, the inside and outside of their cell bodies are

in a state of electrical equilibrium. They accumulate potential transmitted by pre-

synaptic neurons. When this accumulated potential crosses a critical threshold,
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they fire. This transient event is known as an action potential. Here, when neuron

A fires, it undergoes a change in polarity that is propagated via its axonal terminals

and is passed to the connected post-synaptic neuron B, via a release of specialised

chemicals known as neurotransmitters. The behaviour of B is determined by how

its receptors react to the neurotransmitters. The resultant behaviour may be

excitatory or inhibitory, where excitation increases the likelihood and inhibition

reduces the likelihood of B firing. This is illustrated in Figure 3.1, where the

pre-synaptic neuron A is shown to be sending signals to the post-synaptic neuron

B.

Such changes are encoded in the synapses of the neurons so that the

likelihood of B responding to signals coming from A is higher in the future. This

property of synapses to change their strength based on neural activity is termed

synaptic plasticity [Abbott and Nelson, 2000]. The more two neurons co-fire,

the higher their mutual synaptic strength grows and the larger the said likelihood

becomes. Thus, stimuli repeatedly exciting a large number of neurons can increase

their mutual synaptic strength, assembling them into a CA. Such a CA may

respond to the original stimuli or variations of it in the future, and stay active

even after external stimuli disappears. This reverberative behaviour (discussed in

detail in Section 3.2) is one of the fundamental dynamics of the CA. If a variation

of the stimuli excites certain neurons of the CA, the activity may spread to other

neurons and activate the whole CA due to the high mutual synaptic strength of

its constituent neurons.

A B

Figure 3.1: Co-firing pre-synaptic and post-synaptic neurons
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As mentioned in the beginning of this chapter, there is extensive evidence

for CAs in the mammalian brain. Hebb’s postulate that not individual neurons,

but activity of large groups of neurons are the basis of mental processes, has

been experimentally observed. From these observations, it is evident that CAs

are central to the fundamental processes of associative memory. Two such recent

studies are briefly discussed in the following subsections.

3.1.1 Hebbian learning in the rat hippocampus

The hippocampus is a region of the mammalian brain thought to be extensively in-

volved in memory processes such as formation and association [Eichenbaum, 2004;

Hartley et al., 2007; Hassabis et al., 2009; O’Reilly and Rudy, 2001; Shohamy and

Wagner, 2008; Squire, 1992; Tulving and Markowitsch, 1998]. Recently, O’Neill

et al. [2008] studied the firing patterns of specialised neurons in the rat hippocam-

pus that are responsible for encoding spatial and navigational information, aim-

ing to better understand the underlying mechanisms of reactivation of neurons

encoding such information. The study revealed that these neurons fire recurrently

during sleep, even after external stimuli have long ceased. The rate of co-firing of

these groups of neurons increased based on the number of times they were active

together when not asleep, for instance, neurons representing similar places that

co-fired during an exploration task. In contrast, neurons representing dissimilar

places experienced reduced co-firing rates. These are indicative of the Hebbian

learning mechanism that drives the formation of CAs. The reactivation behaviour

of neurons are thought to govern the consolidation of memories [Carr et al., 2011],

further indicating CA formation through repeated co-firing of neurons.
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3.1.2 Human cortical CAs

Molnár et al. [2008] analysed slices of cortical regions of the human brain in order

to study cortical neural activity. The data they recorded was the first of its kind

for human brains. They found that individual action potentials are capable of

triggering activity in groups of neurons. The activity can propagate further and

excite large networks of neurons. The initial potential was achieved by applying

external stimulation to a particular neuron. Such synaptic strength possessed by

a neuron is accounted for by the Hebbian learning mechanism, where co-firing

increases synaptic efficacy of neurons. The initial action potentials triggered long

lasting activity across large networks of neurons that persisted even after the

removal of the external stimuli. This network of synaptically connected neurons

spanning different brain regions affirms Hebb’s idea that not individual neurons,

but groups of neurons are responsible for information processing. The researchers

suggested that such CAs may be the building blocks of higher order cognitive

phenomena as proposed by Hebb.

3.2 Dynamics of CAs

CAs exhibit several interesting properties that provide insight into different aspects

of information processing in the brain. These properties provide a viable account

for the fundamental processes of memory formation and association. Computa-

tional CA models that can emulate these properties are able to provide a unified

mechanism for simulating neurobiologically realistic long term and short term

memories unlike traditional separatist models. This section overviews the basic

properties of CAs, namely, how formation of CAs account for long term memories;

how their reverberative behaviour accounts for short term memories; how synaptic

associations between CAs form associative memories; how overlapping CAs can

account for another type of association; and the competitive nature of CAs.
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3.2.1 Formation and long term memory

As discussed in the previous sections, CAs are formed when mutual synaptic

strength of neurons with inter-synaptic connections increase as a result of repeated

co-firing. An external stimulus may excite a group of neurons leading to the

formation of a CA that is bound to that particular stimulus. If the stimulus is

the sensory information of seeing an object, for instance, an apple, the CA formed

subsequently is the neural representation of the apple. This process of physical

synaptic modification resulting in the formation of CAs drive long term memory

formation [Buzsáki and Draguhn, 2004; Girardeau et al., 2009]. This apple CA

may be activated in the future when encountering the same apple, or a part of

it. It may also be activated by the sight of different apples with similar features,

as excitation of a few neurons of a CA may lead to the activation of the CA as

a whole, performing completion effects [Lansner, 2009]. While in reality, there

are many complex processes involved in long term memory formation, this is a

simplified account of the underlying neural mechanisms.

3.2.2 Reverberation and short term memory

Reverberation in terms of CAs is the process of activity cascading through a CA

even after an external stimulus that triggered it ceases. This persistent firing

behaviour of neurons in the CA may be triggered by an external stimulus, or by

activity from a connected CA. The reverberation may persist until the recurrent

energy of the CA dissipates due to fatiguing neurons, or activation from connected

CAs cease. Such transient activation of CAs accounts for short term memory,

where a concept represented by a CA can be considered to be active in the working

memory for a short period of time. This implies that CAs are a part of the working

memory only when they are active. When a CA is transiently active, it may enter a

labile state where further modifications are possible, for instance, association with
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a different CA [Shirvalkar, 2009]. So, CAs once formed are subject to changes in

the future such as association, weakening, or even fractionation into smaller CAs,

influenced by various factors.

3.2.3 Association via synapses

CAs can be associated with each other via the same mechanism that drives their

formation. Repeated co-firing of neurons may assemble them into a CA. If a

group of co-firing neurons with synaptic connectivity belong to different CAs,

an increase in their mutual synaptic strengths will drive them to association,

in turn, associating the CAs they are a part of. Two such CAs with synaptic

association may activate each other in the future when one of them becomes

active. This mechanism may underlie the association of non similar, but co-

occurring concepts. For example, while an aeroplane may not share any superficial

or abstract similarities with the sky, the thought of one often elicits the thought

of the other. This may be due to the repetitive co-occurrence of the two concepts,

where the CA representing the aeroplane is co-active with the CA representing the

sky. This behaviour is consistent with aspects of Pavlovian conditioning discussed

earlier, where stimuli are associated via repeated co-presentation.

There is another type of CA association where concepts sharing a large

number of abstract features may be encoded by a common subset of neurons

in CAs representing them. This association, association via neural overlaps, is

discussed in the next section.

3.2.4 Association via neural overlaps

A neuron is not limited to a single CA and may belong to multiple CAs. So, there

may be physical regions of neural overlap between CAs [Sakurai, 1996, 1999]. Such

neuronal overlaps may be governed by factors such as similarity of initial external
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stimuli. There is evidence that neurons in a CA represent different aspects or

features of the information that the CA encodes [Osan et al., 2011]. This implies

that similar stimuli may be bound to CAs that have physical overlaps, where

neurons in the overlapping regions encode similarities.

Dog

Cat

Mammal

Figure 3.2: An example of neural overlap in CAs

Figure 3.2 shows an example of two physically overlapping CAs. The dog

CA and the cat CA are composed of 16 neurons each, of which six are shared be-

tween the two. These shared neurons represent the abstract features of mammals

shared by dogs and cats. While these shared neurons may be a part of the dog

and cat CAs, they may represent a separate mammal CA. The behaviour of this

mammal CA may depend on context. When external stimuli activates the dog

CA, activation may spread to the mammal and cat CAs. While this is an extreme

simplification of biological CAs that may have tens of thousands of neurons each,

and may share thousands of neurons with other CAs, it serves as an illustrative

example. A model shows this behaviour in overlapping CAs [Huyck, 2007]. Such

behaviour may be the basis of “train of thoughts”, where thinking of a dog leads

to thoughts of different kinds of dogs, and other related animals, as it is known
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that human memories are distributed in such ways [Levy and Horn, 1999].

Complex cognitive processes are represented by large scale overlapping

neural circuits in the brain [LaBar et al., 1999]. There is evidence that brain

regions involved in vastly different processes such as linguistics and motor move-

ments have information encoded across them in a distributed manner [Kable et al.,

2002]. In human subjects, the brain regions activated in a passive reading task

involving action words such as pick and kick were found to physically overlap with

regions concerning fingers and feet respectively [Hauk et al., 2004].

Sharing of neurons across CAs provide increased capacities for encoding

information as opposed to encoding them in discrete neurons. That is, overlapped

representations allow encoding of more information than the available number of

neurons. Such distributed representations also increase the resilience of encoded

memories. While it may seem that extensive overlaps may reduce the discrim-

inability of the concepts they encode, that is not necessarily the case [Levy and

Horn, 1999; Palm, 1991; Valiant, 2005; Yoshizawa et al., 1993]. Moreover, spread-

ing of activation across overlapping CAs enable passing of information from CA

to CA. Hence, overlapped encoding of CAs is an important mechanism underlying

associative memory.

3.2.5 Inter-CA competition

CAs compete for activation via their constituent inhibitory neurons. When two

CAs are active, mutually inhibitory connections between them send inhibitory

signals trying to suppress each other’s activation. This behaviour supports classi-

fication of ambiguous stimulus, where multiple CAs activated by the same stimulus

compete, with the CA better incorporating the stimulus becoming more active.

For instance, when sensory stimuli representing objects with spatial and temporal

equivalence are encountered, active regions in the brain corresponding to them

compete and one representation wins, as two objects cannot be usually perceived
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to occupy the exact same space at any given time [Keysers and Perrett, 2002].

Similarly, it has also been observed that models of CAs in the cortical regions con-

cerning hearing compete for activation when activated with stimuli representing

vowels throughout the period of stimulation [Hoshino and Zheng, 2004]. Compe-

tition also limits the number of CAs that may be active in a system with capacity

constraints, such as the working memory [Kaplan et al., 1991]. In computational

CA models, competition between CAs via inhibitory connections reduce the prob-

ability of cascades of neural activity causing undesirable CAs to activate [Connolly

and Reilly, 2005].

3.3 CAs and associative memory

CAs by nature are memory states. As discussed in the previous sections, forma-

tion of CAs is considered the basis of long term memory. A CA formed by an

external stimulus may be the mental representation of it. This external stimu-

lus or variations of it can activate the CA which may reverberate even after the

stimulus ceases. This reverberation is considered the basis of short term mem-

ory. Reverberating CAs may develop associations with other CAs. This may be

based on the similarity of the stimuli or concepts representing them, contiguity,

or depending on how often they are co-active [Wickelgren, 1999]. Such associa-

tions may develop via the co-activation of CAs, where associations are encoded as

strengthened synaptic efficacies via Hebbian learning. Associations between CAs

may also be represented by physical neural overlaps as discussed in Section 3.2.4,

where overlapping regions represent shared features. Chapter 5 describes models

that explore synaptic and overlapping associations in CAs.
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3.4 CAs as attractor states

The idea of attractor networks was inspired by an important early work of Hopfield

[1982]. They are recurrent networks of neurons, in which patterns of activity tend

to settle to “attractor states” over time [Amit, 1989]. When presented with an

external stimulus, activity elicited in such a network may settle to a particular state

that then becomes the internal representation of it. When the same stimulus or its

variants are presented to the network in the future, activity in the network may

converge to the previously formed attractor state—that is, become “attracted”

to it. For this reason, attractor networks may also serve as content addressable

associative memory systems, as it is possible to retrieve previously learnt states.

A neural network can encode attractor states by stimulus driven synaptic

modification of groups of neurons via Hebbian learning [Amit and Brunel, 1995].

Such groups of neurons with modified synaptic efficacies bound to a particular

stimulus may fire in response to the same stimulus or variants of it in the future.

Since this is essentially the process of CA formation (discussed in Section 3.1),

CAs can be considered attractor states, where CAs formed by external stimuli

are their mental representations. There are studies suggesting the presence of

attractor dynamics in the brain [Cossart et al., 2003; Rolls, 2007; Wills et al.,

2005].

Attractor networks have been used for a wide range of tasks [Byrne and

Huyck, 2010; Fransen and Lansner, 1998; Garagnani et al., 2009; Huyck, 2007,

2008; Knoblauch et al., 2007; Wennekers, 2007, 2009; Wennekers and Palm, 2000;

Wickelgren, 1999]. The ANN used in this thesis (discussed in the next chapter) is

an attractor network.
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3.5 Chapter summary

This chapter discussed Hebbian CAs in detail. It delved into their neurobiology

and physiology, various dynamics exhibited by them, and the mechanisms by which

they form different kinds of associative memory. It also briefly reviewed two recent

neurobiological studies on CAs in mammalian brains. The next chapter discusses

the FLIF ANN with which CAs are modelled in the various simulations described

in this thesis.



Chapter 4

The FLIF neural network

The previous chapter discussed Hebbian CAs and their properties. Computational

CA models encompassing such neurobiologically inspired characteristics are able

to model complex processes. An ANN based on Fatiguing Leaky Integrate and

Fire (FLIF) neurons that can simulate CAs via the mechanisms described in the

previous chapter, is detailed here. It is based on the Connection, Association,

and Networking Technology (CANT) neural network framework written in the

Java programming language [Huyck, 2001]. The architecture is able to simulate a

large number of neurons in real time, with as many as several hundred thousands

in a single network. All associative memory models developed in this thesis are

modelled with this ANN. These models are described in detail in the next chapter.

4.1 The FLIF neuron

The FLIF neuron model is an extension of the widely used Leaky Integrate and Fire

(LIF) neuron model [Gerstner, 2002; Maass and Bishop, 2001; Tal and Schwartz,

1997]. They encompass many characteristics of biological neurons [Huyck, 2007].

Like the biological neuron, the FLIF neuron integrates incoming potential from

pre-synaptic neurons. On surpassing a critical threshold, it fires with a burst

transmitting the accumulated potentials via its synapses to post-synaptic neurons.

At every instant the neuron is integrating potential, while below the threshold,

some potential leaks away. This leaking behaviour is based on how potential

leaks through membranes of biological neurons [Churchland and Sejnowski, 1992].

Similarly, every time the neuron fires, it experiences fatigue, the “tiredness” felt

41
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by the neuron. Fatigue affects the firing threshold of the neuron in such a way

that it becomes relatively difficult for it to fire in the near future. As a result,

repeatedly firing neurons, for instance in a reverberating CA, die out, eventually

enabling transient short term activation of CAs. It has been demonstrated that

CAs modelled with FLIF neurons are Turing complete [Byrne and Huyck, 2010],

implying that it is possible to model complex computational processes in a purely

neural system.

4.2 Network properties

The parameters governing the four characteristics of the FLIF neuron (fatiguing,

leaking, integration, and firing), the connectivity of neurons, and other properties

of the FLIF ANN are discussed in this section.

4.2.1 Topology

In the network, neurons follow a connection topology inspired by the biological

distanced biased connectivity. The neurons are laid out in a N = rows×columns

grid where neurons on the edges are near the neurons on the opposite edges,

making the network toroidal. It is possible to partition the network into smaller

toroidal networks or subnets for modularity. Each neuron connects to neighbouring

neurons within a fixed city block distance (d), where d = 4, as it has been observed

to work well across many simulations [Huyck, 2000, 2007; Huyck and Nadh, 2009].

In addition to the local connections, a connection is made to another random area

in the subnet via a long distance axon [Churchland and Sejnowski, 1992]. Hence,

the closer the two neurons are, the higher their likelihood of being interconnected.

This is illustrated in Figure 4.1. The figure shows the partial connectivity of a

single neuron in a hypothetical 5×5 network where its local connections are within

d, and a long distance connection to a neuron at the bottom of the network. The
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neuron also connects to the neuron at the opposite edge of the network, as on a

torus, it is in the immediate vicinity.

Figure 4.1: Connectivity of a single neuron in a hypothetical 5x5 FLIF neural

network

The connectivity rule is shown in Equation 4.1. There exists a connection

between neuron i and j only if cij = 1, where d is the distance, κ is the connection

probability (a constant), and r is a random number between 0 and 1.

D = (
1

d ∗ κ
)

cij =

1 r < D

0 r > D

(4.1)

Thus, neurons in the network are sparsely connected. Even though there

are a staggeringly large number of neurons—an estimated 100 billion—in the hu-

man brain, on average, a neuron synapses with only about 1000 other neurons

[Koenig et al., 2005]. The connection topology in the neural network is an ex-

treme but faithful simplification of this. It adheres to the connection topology in

the brain, where neurons reside in distributed circuits and not in fully connected
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networks [Schüz, 1998]. This is in contrast to the fully connected ANNs previously

discussed in Section 2.3.

4.2.2 Excitatory and inhibitory neurons

The network has two different types of neurons, excitatory and inhibitory neu-

rons. Excitatory neurons transmit positive potentials upon firing to post-synaptic

neurons which increases the likelihood of them firing. When an inhibitory neu-

ron fires, it transmits negative potential to post-synaptic neurons, reducing their

accumulated potential and decreasing the likelihood of them firing. This is based

on the observation that, generally, neurons in the brain show either excitatory

or inhibitory behaviour [Eccles, 1986]. The excitatory and inhibitory nature of a

neuron is determined by how its receptors respond to chemical neurotransmitters

coming from a pre-synaptic neuron [Vicario-Abejn et al., 1998]. While the net-

work does not account for neurotransmitters, their behaviour is abstracted into

the excitatory and inhibitory classification of neurons.

In the network, synaptic weight or synaptic efficacy wij of the synapses

of a neuron i connected to j has the polarity p, so that every time i fires, the

potential propagated through its synapses is affected by p. For all synapses of i,

p = 1 if i is excitatory and p = −1 if i is inhibitory.

The percentage of inhibitory neurons in the network is determined by a

constant ι, where 0 < ι < 1. During the initialisation of the network, i is inhibitory

if r < ι, where r is a random number between 0 and 1, and r is different for every

neuron in the network. Typically, the higher the value of ι, the larger the number

of inhibitory neurons in the network.
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4.2.3 Decay and fatigue

As discussed in Section 4.1, neurons in the network leak some integrated potential

when they are not firing. The network computes this and all other algorithms at

discrete time steps or cycles, where each time step t is equal to 10 milliseconds

in simulated time. This enables the network to gracefully ignore the chemical

synaptic delay in biological neurons [Bennett and Zukin, 2004]. Decay is modelled

in the network by the decay constant δ based on Equation 4.2, where Ait is the

total activation of a neuron i at every time t it is not firing.

Ait =
Ait−1

δ
(4.2)

In contrast, a neuron fatigues when it fires. Fatigue affects the firing

threshold of the neuron in such a way that it becomes more difficult for it to fire

in the immediate future. When a neuron has not fired in a cycle, its fatigue level

reduces so that it can fire again based on a recovery mechanism. This is shown

in Equation 4.3, where θit is the firing threshold i at time t, θ is the threshold

constant, and Fit−1 is its fatigue level at t−1. The state of the neuron is represented

by σit , where σit = 1 if it fires at time t, and σit = 0 otherwise.

θit = θ + Fit−1 (4.3)

Equation 4.4 shows how the fatigue level Fit changes based on the neuron’s

fatigue level Fit−1 at time t− 1, where f is the fatigue rate constant and fr is the

fatigue recovery constant. Also, Fit is always ≥ 0.

Fit =

Fit−1 + f σit = 1

Fit−1 − fr σit = 0

(4.4)

The fatigue mechanism makes it so that active CAs eventually die out.

This dynamic threshold reduces the likelihood of learnt CAs in a network remain-

ing active indefinitely. Such a scenario may lead to undesirable effects such as
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simulated epilepsy, where too many neurons in the network are active, rendering

it dysfunctional [Connolly and Reilly, 2005]. Besides fatigue, inhibitory neurons

also aid in reducing this likelihood.

4.2.4 Activation

Neurons in the network have a critical threshold. When the integrated potential of

a neuron exceeds its threshold, it fires, propagating its potential via its synapses to

post-synaptic neurons. In biological neurons, threshold potentials are governed by

chemical transmissions [Lodish et al., 1999]. Activation of neurons in the network

is based on Equation 4.5, where Ait is the activation of a neuron i at time t when

the neuron is not firing.

Ait =
Ait−1

δ
+
∑
j∈Vi

wij (4.5)

The current total activation is the sum of remnant activation from the

last time step t− 1 (modified by the decay constant δ) and the output of neuron

j ∈ Vi, where Vi is the set of all firing pre-synaptic neurons connected to i. This

is weighted by the connection strength wij between i and j. The neuron fires at

t + 1 if the accumulated activation Ait exceeds its threshold θit+1. Upon firing,

Ait = 0, when the neuron sends its activation to all connected post-synaptic

neurons, losing all potential in the process. Fatiguing causes θ to be dynamic as

described in Section 4.2.3.

4.2.5 Learning

Learning in the network is based on a correlatory Hebbian learning rule [Huyck,

2004] that is derived from Hebb’s original postulate. If a pre-synaptic and post-

synaptic neuron fire together, their synaptic weights get adjusted so as to increase

their mutual synaptic efficacy. On the other hand, if only the pre-synaptic neu-
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ron fires, it experiences reduced synaptic efficacy. This is known as anti-Hebbian

learning. These two rules together act on two neurons i and j in such a way

that their mutual synaptic weights are adjusted based on the frequency of them

firing together, improving the likelihood of the post-synaptic neuron j firing in

response to the pre-synaptic neuron i in the future. In addition, a compensatory

rule modifies the two learning rules so as to make learning in the network bal-

anced. Equation 4.6 and 4.7 show the Hebbian and anti-Hebbian learning rules

respectively, where wij is the total synaptic strength of the synapse from neuron

i to j, χ is the axonal median constant affecting the synaptic strength, and λ is

the learning rate.

∆+wij = µ+
ij

(
1− wij

χ

)
λ (4.6)

∆−wij = µ−ij (−λwij) (4.7)

Equation 4.8 shows the strengthening compensatory modifier µ+
ij and

Equation 4.9 shows the weakening compensatory modifier µ−ij. C is an arbitrary

constant (C = 1.3) that has been observed to work well across different simulations

[Huyck, 2000, 2007; Huyck and Nadh, 2009], wi is the total connection strength

of i, and B is the saturation base which is the desired total connection strength

from a neuron.

µ+
ij = C(B−wi) (4.8)

µ−ij = C(wi−B) (4.9)

The strengthening and weakening compensatory rules modify the Heb-

bian and anti-Hebbian learning rules respectively. They try to retain the overall

synaptic connection strength of i close to B by increasing it if it is too low and

decreasing it if it is too high. This keeps neurons with low synaptic strengths, for
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instance in a CA, from getting isolated from neurons with high mutual synaptic

strengths. Similarly, it keeps neurons with high mutual synaptic strengths from

becoming too dominant by counterbalancing their strengths. This ensures bal-

anced activity distribution across CAs formed in the network. Such a mechanism

is neurobiologically plausible, as biological neurons have constrained capacities for

storing and transmitting potential [Huyck, 2007].

4.3 Interaction of CAs in the network

CAs by nature are reverberating neural circuits. Such circuits form in the neural

network via unsupervised learning. That is, neurons self-organise into CAs based

on how stimuli activate them without any explicit instructions on how to achieve a

target state. This assembly process is driven by the previously described Hebbian

learning rules. While the CAs that form in the network have a faithful resemblance

to biological CAs, they are extreme simplifications. For instance, while an average

neuron in the brain may have several thousand connections to other neurons, a

neuron in the network may only have a few hundred connections or fewer based

on the configuration.

When two connected neurons in the network co-fire, their synaptic weights

get strengthened, increasing the likelihood of the pre-synaptic neuron activating

the post-synaptic neuron in the future. While two such neurons may be a CA, a

CA may also have tens of hundreds of neurons. When an external stimulus causes

a few neurons of a CA to fire, the high synaptic strengths may cause other neurons

in the CA to fire and in turn activate the whole CA. This activity may cascade

around the CA and cause it to reverberate even after the external stimulus ceases.

In the network, this transient reverberation may die out due to fatiguing neurons

or because of inhibitory neurons. This is necessary, as neurons should not enter a

biologically implausible state of perpetual activity. Moreover, neurons may need
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to participate in different CAs for performing different tasks. A visualisation of

reverberation of a CA in a 40× 40 network is shown in Figure 4.2.

t=3100 t=3125 t=3150 t=3175

Figure 4.2: Visualisation of activity in a reverberating CA

Each cell in the grid is a neuron whose activation level is indicated by the

strength of its shade of grey, where grey and white cells are non firing neurons,

and black cells are firing neurons. The network was presented with a stimulus

for 3000 cycles, where 50 random neurons of a total of 200 neurons in the centre

of the network were externally stimulated. These 50 random neurons changed

every cycle. External stimulation involves manually setting the activation levels

of neurons to values exceeding their firing thresholds so they fire immediately. At

the end of 3000 cycles, the external stimulus was removed. The CA formed as a

result of the co-firing of these neurons can be seen to have the most activation at

t = 3100. The CA reverberates for roughly 200 cycles, with its activation level

peaking at t = 3100, and waning thereafter with each subsequent step. The overall

activation of the CA is shown in Figure 4.3.

Equation 4.10 gives the activation level of a CA at time t, where ait is the activation

of neuron i ∈ Vt, Vt being the set of all neurons firing at t in the reverberating

CA.

At =
1

|Vt|
∑
i∈Vt

ait (4.10)
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Figure 4.3: Activity of a reverberating CA in the FLIF neural network

When a CA is active, it may in turn activate other CAs that have synaptic

connections or share neurons with it. This is a basic associative memory mecha-

nism in CAs. Since neurons in the network have distance biased connectivity, in

larger networks, CAs physically distant from each may still share neurons. In some

cases, the initially active neurons of a CA may not be strong enough to activate

the whole CA, and the partial reverberation may die out quickly. Such partial

activation of a CA may be a pseudo-stable state, where the activity represents a

part of the information the CA encodes. For example, partial activation in a CA

encoding a complex shape may represent a specific feature of the shape, such as a

curve.

As discussed in Section 3.2.5, CAs compete with each other for activation

via mutual inhibitory connections. Figure 4.4 shows the activation levels of two

competing CAs A and B in a 20 × 20 network (normalised to the range [0, 1]).

These were recorded over four different random network configurations to show the

uniform competitive behaviour under different configurations. The two CAs were

allowed to form over 3000 cycles by externally stimulating the first 200 and the last

200 neurons alternatingly. As a result, neurons in the two halves of the network

assembled into competing CAs. At t = 3000, training was stopped and twenty
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random neurons of each CA were externally stimulated for 100 cycles. These

neurons propagated activity to other neurons, activating the whole CAs. They

continued to reverberate for roughly 100 cycles after the stimulus was removed.

While reverberating, both CAs competed for activation by trying to inhibit each

other, gradually dying out from neuronal fatigue and inter-CA inhibition.
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Figure 4.4: Activity of two competing CAs

4.4 Chapter summary

This chapter discussed in detail, the FLIF ANN used for modelling CAs in simu-

lations described in this thesis. It discussed various properties of the FLIF neuron

along with its mathematical and computational details, and described the learning
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algorithms by which the ANN models CAs. It described the topology of the ANN,

and discussed the formation and interaction of CAs within the network. The next

chapter presents in detail, the various associative memory models developed in

this thesis.



Chapter 5

CAs at work: models and tasks

CAs are considered to be the neural basis of many mental processes. As such, com-

putational models of CAs offer dynamics that other systems do not. The previ-

ous chapter described such a computational model—an ANN framework based on

FLIF neurons capable of modelling relatively neurobiologically faithful CAs. Prior

chapters discussed various background concepts leading to the work described in

this chapter, from the basics of human associative memory to the neurobiology and

behavioural characteristics of CAs. This chapter describes a series of associative

memory models developed in the FLIF ANN. The models explore various proper-

ties of CA based associative memory and the higher order phenomena emerging

from them.

Each model described in this chapter explores increasingly complex forms

of CA based associative memory, namely, emergent context sensitivity from an

associative memory of CAs with synaptic associations; spatial cognitive mapping

supported by the sequential activation of CAs in an associative memory of CAs

with synaptic associations; novel behaviour from emergent generalisation in an

associative memory of continuous overlapping CAs; natural language disambigua-

tion supported by emergent relationships of semantic data in a large associative

memory of overlapping CAs. In that respect, they are quite distinct from one

another. However, processes they model are unified to a certain extent, as they

stem from the same set of mechanisms.

It seems worthwhile to mention that in the course of this thesis, many

other CA based models were developed—A CA based content addressable memory

based on the classic Jets and Sharks model [Rumelhart and McClelland, 1982] that

53
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explored learnt prototypes [Huyck and Nadh, 2009]; a simple image recognition

tool based on physiologically realistic rudimentary retinal cells, and a simplified

version of line and angle detection in the visual cortex region of the brain; and sev-

eral simple categorisation tasks based on many to many associations from synaptic

and overlapped encoding of CAs. These simple models aided the development of

the models described in this chapter, which are summarised below.

Emergent context sensitivity in an associative memory

Inspired by Pavlov’s [1927] conditioning experiment, the model shows how con-

text sensitivity can be inherent in an associative memory. It demonstrates that

learnt CAs representative of different external stimuli can behave differently in

different contexts. In the model, a hypothetical dog reacts differently to food de-

pending on the context—it salivates when hungry and lies down when not hungry.

Even though these concepts are learnt in the same manner, the interplay of CAs

representing them gives rise to context effects.

Spatial cognitive mapping with a sequential associative memory in an

embodied agent in a virtual environment

The model shows an embodied agent in a virtual 3D environment capable of simple

spatial cognitive mapping. The CA based agent explores the environment while

learning features such as rooms, doors, and door colours as sequential associations

via visual cues. The agent can then navigate to a particular room based on the

learnt landmarks. The model shows that complex phenomena such as spatial

cognitive mapping can be accounted for by the dynamics of CAs in an associative

memory.

Novel behaviour from a massively overlapping associative memory in a

game playing agent

The model is a virtual agent capable of learning and playing the classic game
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of Pong. The agent learns the game either by “watching” a human play, or au-

tonomously from environmental feedback. Game moves are encoded in a massively

overlapping associative memory. It is then able to perform novel moves in the game

based on generalisation effects that emerge from its associative memory.

Natural language disambiguation with an associative memory of seman-

tic hierarchies

A natural language processing model that disambiguates prepositional phrase

(PP) attachment ambiguity in the English language is described. The model

uses a large overlapping associative memory of semantic hierarchies of sentences

extracted from a corpus to disambiguate novel sentences. It attains a resolution

accuracy on par with many known machine learning systems that perform the

same task.

5.1 Emergent context sensitivity in an associa-

tive memory

The model was conceived as a result of research into types, tokens, and the nature

of associations that may be present in an associative memory. Types are abstract

memories where as tokens are instantial episodic memories. While there are many

computational models of associative memory, such properties are usually ignored.

Early versions of the model were attempts at emulating explicit types of associ-

ations, but it turned out to be difficult to find low level neurobiological and psy-

chological bases for the process. After many fruitless iterations, further research

indicated that context is a process that affects memory association and retrieval

extensively, causing memories to behave differently under different circumstances

[Maratos et al., 2001; Nieuwenhuis et al., 2005]. While there is extensive research

studying high level effects of context, the low level neural mechanisms underpin-
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ning the process are not well understood. Subsequently, context modelled as CAs

was attempted.

The model was devised to contain elements of Pavlovian conditioning to

test if context could be modelled via conditioned learning of associative memories,

like their high level behaviour suggests. While emergent effects were not expected,

the resultant model saw the implicit emergence of context from simple associa-

tive learning. This is an interesting prospect, as without the need for explicitly

modelling context, it emerged as a by product of CA formation and association,

processes with strong neurobiological backgrounds. The psychological process of

context is briefly discussed in the following subsection (Section 5.1.1), and the

model in the subsequent subsections.

5.1.1 Context

Context is the implicit knowledge available in a situation that facilitates wider

awareness and perception of the situation, beyond what is explicitly available.

This is evident in language. For example, in human conversations, communica-

tion is based on implicit situational information, eliminating the need to explicitly

describe various facets of a topic. Symbols in the environment can also have differ-

ent semantics in different contexts. Thus, context reduces the need for redundancy

and facilitates efficient information exchange and processing. Context is also a low

level process, where activity of neural circuits in the brain vary under different

conditions. For instance, activity of reward sensitive regions in the human brain

vary based on the context in which they are activated [Nieuwenhuis et al., 2005].

Memory retrieval is also heavily influenced by context, for example, influence of

emotional contexts on episodic memory retrieval [Maratos et al., 2001]. Similarly,

a concept may have different semantics in different contexts. For instance, neural

representations of words in the brain activate differently depending on the context

they are perceived [Federmeier et al., 2000]. That is, the activity of a CA may be
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influenced by the activity of associated CAs depending on different factors. There

is evidence suggesting that neural representations of context may be conjunctive

[O’Reilly and Rudy, 2001; Rudy and O’Reilly, 2001]. How such context depen-

dent neural behaviour in turn produces high level context sensitivity remains to

be understood well.

The model described in this section, inspired by the Pavlovian condi-

tioning experiment [Pavlov, 1927], explores how context sensitive behaviour can

emerge from the underlying characteristics of CAs in forming associative memo-

ries.

5.1.2 The model

The model represents a hypothetical dog that is conditioned similarly to Pavlov’s

experiment. It drives the formation of a simple associative memory with five CAs

representing an object, two states, and two actions—food, hungry, not hungry,

salivate, and lie down respectively. The model learns these concepts individually,

and then the associations between them. It then sees differential activation be-

haviour of actions for the same object depending on the active state or context.

That is, while food is equally associated to all other CAs, activating food in the

context of one of the two state CAs, and in the absence of a context, produces

completely different behaviour in the model. The specifics of the model and the

simulation are described in the following sections.

5.1.3 Network properties

The model consists of a single 50 × 40 subnet named Context. Table 5.1 shows

the network parameters (described in Chapter 4) for the model. Each of the five

CAs to be learnt are designated 400 consecutive neurons in the network.
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Table 5.1: Context model’s network parameters

Context

Learning rate λ 0.05

Threshold θ 3.5

Axonal median χ 0.5

Fatigue f 0.4

Fatigue recovery fr 0.8

Decay δ 1.2

Saturation B 18

Inhibitory neurons ι 0.2

Neurons N 50× 40

5.1.4 Simulation

The 400 neurons designated to each of the five concepts—food, hungry, not hungry,

salivate, and lie down—are externally stimulated for 300 cycles each consecutively.

External stimulation involves choosing a random 50% of the neurons designated

to the concepts every cycle, and setting their activation levels to values > θ. Co-

firing of these groups of neurons lead to the formation of CAs representing the

concepts. When a concept is being learnt, its CA sends inhibition to other regions

of the network via its inhibitory connections. The distance biased topology of

the net ensures that the CA is able to affect a large area of the network. Thus,

initially, all individual CAs inhibit each other.

After individual concepts have been learnt over 1500 cycles, two differ-

ent scenarios resembling the behaviour of a hypothetical dog that salivates on

being presented with food when hungry, and lies down when presented with the

same food when not hungry, are learnt. This is done by choosing a random 50%

of the neurons of the three CAs—the object CA, the action CA, and the state

CA—simultaneously every cycle, and externally stimulating them for each of the
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scenarios in two stages. The stimulation for each stage lasts 300 cycles, and is as

follows:

1. food + hungry + salivate

2. food + not hungry + lie down

During this two stage learning over 600 cycles, the co-activation of these

CAs increases the mutual synaptic strength of inter-CA neurons, eventually as-

sociating them. As a result, when a CA is activated in the future, it may pass

activation to other CAs it is associated with, in turn activating them. During

co-activation, the three active CAs inhibit the two inactive CAs via mutual in-

hibitory connections. Since food is active in conjunction with all other CAs, it

forms both excitatory and inhibitory associations with them.

After learning, the network is tested by externally stimulating the object

CA in context of the state CAs for 100 cycles each—food + hungry and food +

not hungry. The resultant activity in the network is discussed in the next section.

5.1.5 Results and discussion

When food and hungry are activated, they propagate positive activation via learnt

excitatory connections to salivate. At the same time, they have some excitatory

connections, but many learnt inhibitory connections to not hungry and lie down.

As a result, salivate becomes fully active and reverberates, immediately suppress-

ing any activity starting in not hungry and lie down. Similarly, food activated in

context of not hungry fully activates lie down, that in turn suppresses any activity

in salivate and hungry.

Figure 5.1 shows the state of the neurons designated to different concepts

in the network before learning (A) and after learning (B). Before learning, physical

synaptic connections between neurons in the network are distributed, following the

distance biased topology (discussed in Section 4.2.1), and have random strengths

as shown by solid arrows. However, after learning, while physical connections
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Figure 5.1: Initial and learnt states of CAs in the context network

remain the same, their synaptic efficacies change leading to formation of individ-

ual CAs and associations between them. The solid arrows in B show the strong

excitatory associations and the dotted arrows show weak associations that collec-

tively have an inhibitory effect. These associations are formed naturally via the

dynamics of Hebbian learning.
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Figure 5.2: Activation levels of CAs when food is activated in different contexts

Figure 5.2 shows an example of the activation levels of reverberating CAs

during the two tests. A shows salivate quickly rising and suppressing lie down and

not hungry when a random 50% of the neurons of food and hungry are externally

stimulated. Similarly, B shows lie down’s activation rising and hungry and salivate

when food and not hungry are externally stimulated.
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Figure 5.3 shows the activation level of CAs over 100 cycles when food

alone is externally stimulated. Since food has excitatory associations with all

other CAs, it propagates activation to them, causing them to become active and

reverberate. These CAs oscillate, competing with each other for activation. That

is, without an active context, when food alone is active, the model behaves in an

entirely different way.
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Figure 5.3: Activation levels of CAs when food alone is activated

In essence, the behaviour of the model differs radically under different

contexts and when no context is present. This behaviour is inherent in the un-

derlying dynamics of CA formation and association. Without explicitly encoding

context, it emerges implicitly from the associations between concepts. Similar to

context in the real world, learnt concepts in the associative memory act as context

under different conditions. The results from this model are novel, as it shows how

a simple CA based associative memory may implicitly give rise to context effects
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without the need of any explicit external mechanisms. It shows how a group of

concepts with many to many associations can implicitly develop contextuality, a

fundamental process underpinning many higher order phenomena.

While the model is an extreme simplification of the actual neurobiology of

context sensitivity, the activation behaviour shown by the CAs in the model resem-

ble the variable activity of certain brain regions influenced by context [Nieuwenhuis

et al., 2005; Wagner et al., 1998]. Context also plays an important role in effi-

cient memory retrieval by helping differentiate between different items in memory.

Without context, humans often find stimuli ambiguous, for example, the semantics

of certain phrases. However, provided context, disambiguation is faster [Gennari

et al., 2007]. The activity in the model accounts for this behaviour. When food

alone is active, it activates multiple CAs it is associated with, but when a context

CA is active in conjunction, the subsequently active CA is more relevant. The

behaviour of the model reveals some interesting dynamics of context that may be

considered for further research on context effects in associative memories.

5.2 Spatial cognitive mapping with a sequential

associative memory in an embodied agent in

a virtual environment

The spatial cognitive mapping model is an evolved version of a much simpler

earlier model that involved an agent in a virtual environment with two rooms.

The impetus of the original model was the idea of sequential memories in human

associative memories. A task was required for the purpose, and spatial cognitive

mapping was chosen, as aspects of it are considered to involve sequential memories,

and more importantly, CAs [Dragoi and Buzaski, 2006; Tanila et al., 1997]. Spatial

cognitive mapping is a term for many processes [Foo et al., 2005; Nardini et al.,
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2008; Spiers and Maguire, 2008], of which, one is landmark based navigation.

Landmark based navigation is thought to involve sequential activation of episodic

memories concerning landmarks in an environment [Buzsáki, 2005; Dragoi and

Buzaski, 2006; Pastalkova et al., 2008]. The simulation was devised in such a way

that both sequential memories and landmark based navigation could be combined

into a single model.

The agent and the virtual environment was inspired by the CABot project—

a fully neural embodied agent capable of complex vision, natural language parsing,

goal setting, and spatial navigation [Huyck et al., 2011]. A version of the spatial

cognitive mapping model described here has been incorporated into the CABot3

agent [Huyck et al., 2011].

For creating the 3D environment, IRRLICHT [Gebhardt et al., 2009], a

cross-platform 3D engine was used. The behaviour of the completed model was

found to resemble certain low level neurobiological processes involved in the brain,

providing some insight into their nature.

5.2.1 Spatial cognitive mapping

Spatial cognitive mapping is the psychological process by which an individual ac-

quires, stores, and recalls information pertaining to surroundings such as physical

features, relative routes, and landmarks for the purpose of interacting with the

environment [Downs and Stea, 1973]. It is generally used in path finding and envi-

ronmental navigation. Many biological beings—mammals, birds, and insects—use

some form of this process [Bennett, 1996] to facilitate fundamental interactions

crucial for survival in their environments. The ability of many animals to ex-

plore distant territories and find their way back to their nests are examples of this

process.

The idea of cognitive maps was introduced by Tolman [1948] in his land-

mark paper Cognitive Maps in Rats and Men that describes how rats in a maze
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form mental maps of the maze for efficient navigation. Later, O’Keefe and Nadel’s

[1978] work inspired a current of neurobiological and behavioural psychology re-

search on cognitive mapping. However, there is considerable speculation and dis-

agreement on the neural mechanisms underpinning it [Bennett, 1996; Cruse and

Wehner, 2011; Mackintosh, 2002; Sturz et al., 2006; Tversky, 1993; Wang and

Spelke, 2002]. Whether spatial cognitive mapping involves the formation of ex-

plicit integrated spatial “maps” of environments is not clear. There is evidence

suggesting that it may involve multiple strategies such as path integration and

rather simple associative memories of environmental landmarks [Foo et al., 2005;

Nardini et al., 2008; Spiers and Maguire, 2008].

The involvement of the hippocampus region of the brain and its spe-

cialised place cells or grid cells that encode spatial locations that facilitate spatial

cognitive mapping is well studied [Doeller et al., 2010; Dragoi and Buzaski, 2006;

Leutgeb et al., 2005; Tanila et al., 1997]. However, spatial navigation may not

necessarily need complex map like representations, but may be based on simple

associative learning of environmental landmarks [Foo et al., 2005]. For example,

an individual new to a city may not initially memorise routes, but may navigate

by relying on easily recognisable landmarks like buildings. There is evidence sug-

gesting that sequential activation of CAs in brain regions involved in navigation

plays an important role in this process [Buzsáki, 2005; Dragoi and Buzaski, 2006].

This section describes an embodied agent in a virtual environment that

demonstrates an extreme simplification of landmark based navigation behaviour.

The agent learns landmarks in a 3D environment and associations between them

as a simple CA based sequential associative memory. It is then able to perform

basic navigation by recognising previously learnt landmarks, resembling similar

behaviour in humans [Foo et al., 2005]. The resemblances of the model with

neurobiological and psychological processes are discussed in Section 5.2.6. The

model serves as a proof of concept for the phenomenon and explores how such a
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complex process may be supported by a relatively simple associative memory.

5.2.2 The model

The agent exists in a virtual 3D environment composed of four interconnected

rooms. The rooms each have a colour coded door—yellow, blue, red, and green

respectively. Figure 5.4 shows a snapshot of the virtual environment. The agent

has a primitive visual system capable of detecting doors, colours, and open spaces.

It explores the environment by moving from room to room, learning in the process,

doors and their colours, association between doors and rooms, and association

between different rooms. That is, (room−door[colour])m−roomn episodes. Once

learnt, the agent is able to navigate to a particular room by “recollecting” the

colour of the target door relative to its current location. This is enabled by the

Figure 5.4: Spatial cognitive mapping agent’s 3D virtual environment

sequential activation of CAs in its associative memory of learnt landmarks. The

agent is only able to move in straight lines and make left turns in the environment
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for the sake of simplicity, as the model focuses on the associative memory aspect

of spatial cognitive mapping and not properties of physical navigation.

5.2.3 Network properties

The model has a large network that is divided into smaller subnets for modularity—

Colour that encodes colours recognised by the agent; Object that encodes the

landmarks recognised by the agent; Door that encodes the doors encountered by

the agent; Room1 and Room2 that encode rooms the agent visits; Episode that

encodes the associations between doors and rooms as different episodes; and Goal

that encodes the target room in a navigation task.

Blocks of 200 neurons are designated for CAs to be learnt representing

rooms, doors, and episodes in their corresponding subnets. That is, a block for

each of the four colours in Colour, four doors in Door, four rooms each in Room1

and Room2, and four episodes in Episode. While these blocks of neurons are not

CAs initially, they form CAs via co-firing during the exploration task. Object has

two blocks representing door and empty space. Apart from these subnets that are

part of the agent’s associative memory, there is a Vision subnet with neurons that

act as visual receptors for the agent’s vision. Vision is not considered to be a part

of the agent’s learning system. The network parameters of the subnets are given

in Table 5.2.

Figure 5.5 shows the connection topology of the subnets. Arrows represent

random, low weight inter-subnet connections. Double headed arrows represent to

and fro connections between subnets. In such cases, two neurons in different

subnets may have multiple connections with each other. Details of intra-subnet

connections are listed below.

Every excitatory neuron in Colour connects to 50 random neurons in the block

representing door in Object with an initial synaptic weight of 0.5. They also
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connect to 5 random neurons in Door with an initial synaptic weight of 0.001

Every excitatory neuron in Object connects to 10 random neurons in Door with

a synaptic weight of 0.001

Every excitatory neuron in Door connects to 15 random neurons in Colour with a

synaptic weight of 0.001. They also connect to 5 random neurons in Episode

and Goal with a synaptic weight of 0.001

Every excitatory neuron in Room1 connects to 5 random neurons in Episode and

Room2 with a synaptic weight of 0.001

Every excitatory neuron in Room2 connects to 5 random neurons in Episode and

Room1 with a synaptic weight of 0.001

Every excitatory neuron in Episode connects to 5 random neurons in Room1,

Room2, and Door with a synaptic weight of 0.001

Every excitatory neuron in Goal connects to 5 random neurons in Door with a

synaptic weight of 0.001

5.2.4 Vision

The agent is capable of primitive vision with which it “sees” limited aspects of the

environment. The visual system is made of a 100× 80 grid (Vision) of binary on-

off receptors that respond to the four colours the agent recognises—yellow, blue,

red, and green. Vision receives visual stimuli from the environment in the form

of a 100× 80 grid of pixels. Each pixel in this grid is mapped to a receptor in the

corresponding position in Vision. If a pixel has one of the four recognised colours,

its receptor switches on, otherwise, it is off. The environment also sends external

stimulation to Colour, activating the corresponding colour CA. This is done by

a symbolic module that reads the colour of individual pixels in the pixel grid,
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Figure 5.5: Spatial cognitive mapping model’s network structure

and externally excites the neurons in Color corresponding to the most prominent

colour. Thus, the agent is only able to recognise a single colour at a time—the

most prominent colour in its visual field.

When a receptor is on, it sends out positive activation. Every receptor in

the top 20 and bottom 20 rows of Vision connects to 30 random neurons of the

200 neurons representing door in Object, with a synaptic weight of .008. When

the agent has a door at a distance in its view, a few receptors are on, not strong

enough to cause the neurons in Object to fire. As it approaches the door, the image

grows larger, triggering more receptors. When the agent is face to face with the

door, a large number of receptors are on that excite neurons in Object signalling

the presence of the door. Figure 5.6 illustrates how receptors in Vision may appear

when the agent is far away from a door and when the agent is up close to a door,

where black cells represent receptors that are on. Learning in the agent depends

on visual feedback from the environment as discussed in the following section.
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Table 5.2: Spatial cognitive mapping model’s network parameters

Colour, Object, Door, Room1, Room2,

Episode, Goal

Vision

Learning rate λ 0.1 0.0

Threshold θ 4.5 4.5

Axonal median χ 0.5 NA

Fatigue f 0.3 0.0

Fatigue recovery fr 0.8 0.0

Decay δ 1.2 0.0

Saturation B 31 NA

Inhibitory neurons ι 0.3 0.0

Neurons N 40×20 80× 100

5.2.5 Simulation

The simulation consists of two tasks, exploration and navigation. During ex-

ploration, the agent explores the environment by moving through all the rooms

exactly once and returning to the starting room, learning landmarks in the pro-

cess. During navigation, the agent goes to a randomly chosen room using the

“knowledge” it has acquired during exploration. In both tasks, the path the agent

takes is fixed. It only moves forward in straight lines and makes left turns. Figure

5.7 shows a bird’s eye view of the environment and the path taken by the agent.

A symbolic module controls the agent and drives the learning processes.

CAs representing different colours in Colour are learnt prior to the tasks via the

external stimulation of a random 50% of the neurons designated to the colours ev-

ery cycle, for 200 consecutive cycles. During exploration, the agent learns various

features from the external stimulation of the designated blocks leading to CA for-

mation. At the start of the exploration, the agent moves forward from whichever

room it is in. Object signals the presence of a door when the agent encounters one,
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Figure 5.6: Spatial cognitive mapping agent’s vision

triggering a five step learning process:

1. The current room is encoded in Room1 and Room2 via the external stimu-

lation of neurons designated to the room for 300 cycles. For instance, if the

current room is the first room, the first 200 neurons in Room1 and Room2

each

2. The door in the visual field is encoded in Door via the external stimulation

of the neurons designated to it, similar to step 1

3. The newly learnt door CA in Door is associated with its colour CA repre-

senting its colour in Colour. While the colour CA in Colour is already active

from environmental stimuli, the door CA in Door is externally stimulated

for 300 cycles so that it remains co-active with the colour CA

4. The agent moves forward a few steps and when the door disappears from

view, it assumes it is the next room. This new room is learnt in Room1 and

Room2 as in step 1

5. The passage from the previous room to the present and the door connecting

the two rooms is learnt in Episode. This is done via the co-activation of CAs
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Figure 5.7: Bird’s eye view of the spatial cognitive mapping agent’s virtual envi-

ronment

representing the previous room in Room1, the connecting door in Door, and

the current room in Room2 by external stimulating them for 300 cycles

Figure 5.8 shows an example of step 5, where individual CAs representing

various features have been learnt, and the agent is learning the episode (room1 −

door[yellow]1) − room2, via the external stimulation of a random 50% of the

neurons designated to them. The blackened areas represent CAs that have formed,

and the dotted arrows represent associations between CAs learnt as a result of co-

activation caused by the external stimulation.

Exploration ends once the agent has gone through all rooms and has

returned to the starting room. By then, it has learnt all rooms, doors, and the
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Figure 5.8: Learning in the spatial cognitive mapping model’s subnets

associations between them. Since the agent’s knowledge is encoded as episodes

of sequences, it is possible to query its memory. For instance, after exploration,

externally activating a colour CA in Colour activates the door CA representing the

door with that particular colour in Door, which in turn activates the associated

episode CA in Episode. The episode CA further propagates activation to Room1

and Room2, activating the room CAs representing the rooms connected by the

door. Since the agent only moves in one direction, these are rooms before and

after the particular door. Similarly, activating a room CA in Room1 activates the

succeeding room CA in Room2 via the episode CA in Episode that links them.

The episode CA will also activate the door CA connecting the two rooms in Door,

which subsequently activates the colour CA in Colour. Thus, with this simple

sequential associative memory, the agent is able to serially “recollect” features of

the environment, given a single landmark.

After exploration, the agent is tested with a navigation task by making it

go to a randomly chosen room. This is achieved by setting a goal in Goal. The CA

representing the target room is externally activated in Room2. This CA activates

the episode CA in Episode it is associated to which subsequently activates the

associated room in Room1 and the connecting door in Door. The active door

CA is the door that leads to the target room, that is, the goal. The goal is

memorised by externally exciting 200 neurons in Goal for 300 cycles, so that it
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remains co-active with the door CA in Door. Thus, the goal CA is associated to

the target door. That is, if the target door CA in Door is active in the future, it

will propagate activation to Goal activating the goal CA, signalling attainment of

the goal.

With the goal in memory, the agent moves forward, looking for the target

door. On approaching a door, Vision signals Colour with the dominant colour,

and the colour CA subsequently activates the door CA representing the door with

that colour in Door. Here, the agent has recognised a previously learnt feature

from an environmental cue. If the door in view is the target door, the active door

CA in Door activates the goal CA in Goal, indicating the achievement of the goal.

The navigation test ends with the agent moving forward until the door disappears

from view, entering the target room.

5.2.6 Results and discussion

The model was tested on 30 different network configurations, where the connectiv-

ity, initial synaptic weights, and excitatory and inhibitory neurons in the network

varied based on the rules described in Section 4.2. The agent correctly completed

the navigation task every time. While this is not a definitive measure of the

agent’s abilities, it shows that landmark based spatial cognitive mapping is pos-

sible with a simple associative memory. Another mechanism involved in spatial

cognitive mapping—a method of encoding an individual’s relative spatial location

with specialised cells in the hippocampus region of the brain—is shown in the

model described in Section 5.3.

While the model demonstrates an extremely simplified version of landmark

based spatial cognitive mapping in humans, it has reasonable neurobiological basis.

Landmark based spatial navigation is considered to involve episodic and semantic

memories [Burgess et al., 2002; Buzsáki, 2005]. The agent’s associative memory

and the sequential activation of CAs in it resemble the sequential activation of
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hippocampal CAs involved in navigation [Buzsáki, 2005; Dragoi and Buzaski, 2006;

Pastalkova et al., 2008].

In the agent’s associative memory, Episode binds different landmarks to-

gether. Every CA in Episode associates two consecutive rooms in Room1 and

Room2, the door connecting them in Door, and the colour of the door in Colour

via the door itself. Every CA in Episode can be considered an “episode” encoding

segments of the course of the agent’s exploration. Although they lack temporal

information, it is possible to recall a specific episode sequentially. This behaviour

is consistent with one proposed mechanism of encoding episodic memories [Fortin

et al., 2002]. For example, during the navigation task, when the agent is instructed

to go to a randomly chosen room, it recalls the episode of having passed the room,

subsequently recalling other features such as the connecting door and its colour.

So, Episode and other subnets act as a semantic memory, as they together encode

factual information about the agent’s environment. Similarly, the goal CA in Goal

that becomes active when the agent encounters a target door during navigation,

resembles the behaviour of a subset of neurons in the rat hippocampus that fire

when it is in the vicinity of a target goal or landmark in a navigation task [Gothard

et al., 1996].

Activating a CA in any of the subnets in the agent’s associative memory

activates the associated CAs in other subnets via the corresponding episode CA in

Episode. Figure 5.9 shows an example of such a case. The activity shown in the fig-

ure was recorded after the agent learnt the first episode, (room1−door[yellow]1)−

room2. A random 50% of the neurons of the CA representing the first room in

Room1 were externally stimulated for ten cycles, activating the room CA repre-

senting the first room in Room1. Subsequently, CAs in Episode, Room2, Door,

and Colour became active sequentially, reverberating for many cycles.

As discussed in Section 3.2.5, CAs compete with each other for activation.

This is why, for instance, despite being in the same subnet, door CAs representing
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Figure 5.9: Activation of CAs in different subnets in the spatial cognitive mapping

model

two different doors do not usually activate each other. While the CAs can activate

each other, during learning, they are learnt in isolation. Without association via

co-activation or physical overlap of neurons, their inhibitory connections become

stronger. In the model, CAs are designated discrete groups of neurons in different

subnets so as to drive learning and association in particular ways to ensure the

desired behaviour. However, this approach is biased and purely methodological.

If the agent was moved to an environment composed of ten rooms with doors of

recurring colours, it would fail to navigate properly. Since door colours are the

only unique environmental cues the agent relies on, to encode features and create

a sequential “map” of its environment, multiple doors with the same colour would
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activate multiple door CAs in Door, and in turn, multiple episode CAs in Episode,

and room CAs in Room1 and Room2. In such a scenario, the agent would fail

to distinguish between different doors and fail to identify its present location or

a target location correctly. Still, learning concepts and their associations in the

model are neurobiologically plausible.

In conclusion, a better design driven entirely by environmental cues and a

scalable network for memorising a large number of landmarks may yield an agent

with better navigational capabilities. Such a model is currently under develop-

ment, and is briefly discussed in Section 6.2. The model has also been applied

to a more sophisticated, fully neural agent with complex vision, shape and object

recognition, goal planning and natural language parsing [Huyck et al., 2011]. In

this system, the agent’s environment has distinctive landmarks such as pyramids

and stalactites, and the spatial cognitive mapping model works in conjunction

with these features. This shows the adaptability and the viability of the model in

embodied virtual agents. Furthermore, it serves as a proof of concept exploring

some of the processes involved in spatial cognitive mapping. While the subnets

in the model are unlikely to correspond to the brain regions involved in spatial

cognitive mapping, the low level neural behaviour of CAs is fairly consistent with

their observed behaviour. More importantly, it demonstrates the versatility of the

computational CA model.

5.3 Novel behaviour from a massively overlap-

ping associative memory in a game playing

agent

The previous models explored properties of associative memories formed via synap-

tic associations of CAs. This model was developed for exploring the dynamics of
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physically overlapping CAs (discussed in Section 3.2.4), as overlapped encoding

is an important mechanism by which associative memories are formed. Further

research indicated that overlapping CAs may support generalisation [Shohamy

and Wagner, 2008]. An interactive agent was chosen for the model, as such a

system would involve continuous, real time behaviour. This would enable testing

if generalisation could affect behaviour in the model dynamically—an important

characteristic of real world agents.

A minimalistic version of the classic arcade game of Pong was chosen for

its simplicity. The game is an abstraction of the real world table tennis game that

involves moving a paddle in the game environment so as to hit an approaching ball.

In the model, the paddle’s movements are locked to the Y-axis. Hence, the game

dynamics could be faithfully reduced to learning gameplay as position variables.

In terms of encoding the game moves on the neural network, the positions of the

paddle relative to the ball are encoded as CAs. This enables the agent to recollect

the position the paddle should be at a particular instant relative to the position

of the ball in the environment, so as to repeat the previously encoded move, thus

playing the game. Subsequently, it was learnt that the spatial positions of the

paddle and the ball in the game could be represented in a way that resembles the

behaviour of place cells [Doeller et al., 2010; Dragoi and Buzaski, 2006; Leutgeb

et al., 2005; Tanila et al., 1997]—specialised cells in the brain that are thought to be

involved in associative memory, and in particular, representing spatial positions.

To be able to play the game, the agent has to first learn the game moves.

It was decided that instead of explicitly programming the moves into the agent, it

would learn from the environment. For this purpose, two training modes—human

training and self training—were devised in such a way that learning and game

playing in the agent would be continuous processes, resembling biological agents.

Whether massively overlapping CAs could be encoded in a small network, whether

generalisation could be modelled in such a memory, and the constraints that may
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affect the process were unknown.

Initially in the model, formation of overlapping CAs were outside of the

game constraints, where large CAs formed due to massive overlaps. These large

CAs produced continuous recurrent activity, rendering the agent incapable of

learning properly. Eventually, the network parameters were adjusted so that for-

mation, overlapping, and inhibition were suitable for the game. Like the pre-

viously described models, these parameters were derived via manual parameter

exploration. While the lack of a set of unified network parameters that work for

many different models is a drawback, these models serve as proof of concepts for

the complex processes that can be modelled with neurobiologically faithful CAs.

Although arrived at somewhat arbitrarily, the goals of the model are mul-

tifold: to model an associative memory of physically overlapping CAs, to explore

generalisation effects in such overlapping memories, to see if the behaviour of hip-

pocampal place cells can be emulated in CAs, and to model novel behaviour wholly

from an associative memory in an interactive agent. The model is discussed in

detail in the following sections.

5.3.1 Generalisation as a cognitive process

The ability to generalise from past events to adapt to novel situations is key to

intelligence. For instance, generalisation is involved in drawing analogies between

different objects [Gentner, 1983], acquisition of language [Goldberg, 2006], and the

more abstract process of binding [Malsburg, 1995] which concerns how different

concepts are segregated and bound for coherent interpretation. The role of gener-

alisation is commonly exemplified in visual perception and recognition. In vision,

stimuli produced by an object in the environment viewed from different angles or

viewed under different illuminations can be considerably different. Nevertheless,

the brain is not only able to recognise the particular object, but novel objects

that share similarities. This may not be possible if recognition merely involves
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a direct comparison of encoded stimuli with environmental stimuli, as environ-

mental stimuli are rarely the same. Instead, such processes are underpinned by

generalisation and abstraction of previously encoded stimuli [Bunge et al., 2003;

Tervaniemi et al., 1994]. In the case of vision, learnt features are thought to be

distributed across overlapping regions [Tanaka, 1996]. While the high level be-

haviour of generalisation in various contexts is well studied, the low level neural

mechanisms underpinning it are not well understood.

Section 3.2.4 described how neuron sharing between CAs—physical over-

lapping of CAs—is a method of encoding associative memories. Subsets of neurons

in a CA encode different features of the concept represented by the CA [Osan et al.,

2011] and thus, neural overlaps between CAs may represent features shared be-

tween them. The extent of such overlaps may depend on the similarity of features

they encode [Wickelgren, 1999]. There is evidence for such large scale overlaps

in the representation of memories in the brain [Haxby et al., 2001; LaBar et al.,

1999]. Hence, overlapped encoding is thought to be a mechanism underlying gen-

eralisation [Shohamy and Wagner, 2008].

This section describes a model—a simulated agent that learns to play a

single player version of the classic arcade game of Pong [Kent, 2002]—that encodes

information as an associative memory of massively overlapping CAs, with which

it is able to adapt to and play in previously unseen scenarios. The method of

encoding is similar to that of hippocampal place cells. The results are novel and

provide insights into how overlapped encoding of information in the brain may

support generalisation, and how novel behaviour can be produced by processes

that implicitly emerge from an associative memory.

5.3.2 The model

The model is a virtual agent that learns to play a game of Pong by “watching” a

human play or autonomously from environmental feedback. Learning in the agent
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involves encoding game moves in an associative memory. The agent is then able to

make previously unseen game moves by generalising from previously learnt game

moves, where generalisation implicitly emerges from the overlapped encoding of

CAs. Learning is driven by visual feedback from the game environment, perceived

by the agent with a rudimentary visual system. Furthermore, learning in the

model is continuous, where every perceived and played game move modifies the

agent’s memory.

The game environment consists of a vertically movable paddle and a ball

in a rectangular enclosure of four walls. The paddle is locked to the Y-axis and

confined to the wall on the left, while the ball is free to move around the envi-

ronment. The ball bounces around the environment, rebounding and changing its

direction when it touches a wall or the paddle. The goal of the game is to move

the paddle along the Y-axis so as to hit the approaching ball and prevent it from

crossing the paddle’s Y-axis field, that is, going past the paddle and coming in

contact with the wall behind it. When the human or the agent moves the paddle

and hits the ball successfully, the move is considered a “hit”, otherwise, a “miss”.

A simple score board keeps track of the hits and misses, and is used as a superficial

measure of performance. Figure 5.10 illustrates the game environment, where the

greyed paddle area is the Y-axis field to which the paddle’s movements are limited,

and the large white space is the ball’s area.

The agent learns to play the game by encoding the game moves—the

positions of the paddle relative to the positions of the ball. The representation

of positions of the paddle and the ball resemble how place cells in the brain are

thought to represent self-location. While the actual game of Pong usually involves

taking into consideration both X and Y positions of the ball and a single axis of

the paddle, for the sake of simplicity, the agent only perceives the Y-axis positions

of the paddle and ball. The network properties of the model are described in

the next section, and different aspects of the game are discussed in the sections
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Figure 5.10: Pong game environment

thereafter.

5.3.3 Network properties

The model’s network is divided into smaller subnets, namely, Paddle that encodes

Y-axis positions of the paddle; PaddleIn, an intermediary subnet that relays visual

signals to Paddle; Ball that encodes Y-axis positions of the ball; and Control that

regulates aspects of the agent’s vision. In addition, there is a Vision subnet made

of visual receptors that is a part of the agent’s simple visual system. Paddle and

Ball together are the agent’s associative memory, as learning only happens in and

between them. The rest of the subnets are for signalling and control.

Figure 5.11 shows the connectivity of the subnets in the network. The

black arrow heads represent low weight excitatory inter-subnet connections. The

double headed arrow between Paddle and Ball represents to and fro connections,

where two neurons in the subnets may have more than one connection with each
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other. The arrow between Control and PaddleIn represents random, all inhibitory

connections. Vision connects to PaddleIn and Ball in a particular manner which

is explained in Section 5.3.4. The details of these inter-subnet connections are

given below.

Every excitatory and inhibitory neuron in Paddle connects to 20 random neurons

in Ball with an initial synaptic weight of 0.001 and −0.001 respectively

Every excitatory neuron of each of the ten neurons in every row of PaddleIn

connects to all the ten neurons in the corresponding row in Paddle with a

synaptic weight of 6.0

Every excitatory and inhibitory neuron in Ball connects to 30 random neurons

in Paddle with a synaptic weight of 0.001 and −0.001 respectively

Every inhibitory neuron in Control connects to 100 random neurons in PaddleIn

with a synaptic weight of -8.0, for the purpose of disabling the agent’s vision

when necessary

Control

PaddlePaddleIn

Vision

Ball

Figure 5.11: Pong model’s network structure

Table 5.3 shows network parameters of the subnets. As in the previously

described models, the parameters were determined via manual parameter explo-

ration, and are set in such a way that learning between Paddle and Ball is gradual.



5. CAS AT WORK: MODELS AND TASKS 83

Table 5.3: Pong model’s network parameters

Vision Control PaddleIn Paddle Ball

Learning rate λ 0.0 0.0 0.0 0.1 0.1

Threshold θ 6.0 1.0 4.5 3.5 4.5

Axonal median χ NA 0.4 0.15 0.3 0.15

Fatigue f 0.6 0.2 0.6 0.9 0.9

Fatigue recovery fr 0.8 0.8 0.8 0.3 0.3

Decay δ 1.2 1.2 1.2 1.3 1.3

Saturation B NA NA NA 18 18

Inhibitory neurons ι 0.2 1.0 0.1 0.2 0.2

Neurons N 100×100 20× 10 100× 10 100× 10 100× 10

5.3.4 Vision

The agent is capable of rudimentary vision, and learns to play the game entirely

visually. The visual system is similar to that of the previously described spatial

cognitive mapping model (Section 5.2). It consists of the Vision subnet—a 100×

100 grid of binary on-off receptors that respond to the colour black. Vision receives

visual stimuli from the environment as a 100 × 100 grid of pixels. Each pixel in

this grid is mapped to a receptor in the corresponding position in Vision. Since

the paddle and the ball are the only coloured elements in the environment, pixels

corresponding to their position switch on the receptors in Vision. That is, Vision is

a one-to-one mapping of the elements in the environment, as seen by the allocentric

agent.

When a receptor is on, it sends out positive activation. This is a value

> θ of PaddleIn and Ball so that the neurons receiving the activation fire immedi-

ately. Every receptor of the ten receptors in the paddle area of Vision—the width

of the Y-axis field of the paddle being ten pixels—connects randomly to the ten

random neurons in the corresponding row in PaddleIn with a synaptic weight of
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6.0. Similarly, each of the 90 remaining receptors in every row in the ball area

of Vision connects randomly to the ten neurons in the corresponding row in Ball

with a synaptic weight of 6.0. The ball moves constantly, the paddle occasionally,

and Vision reflects their position in the environment in real time. The row-to-row

connectivity between Vision, and PaddleIn and Ball makes it so that the activa-

tion propagated by the receptors in Vision excite neurons in PaddleIn and Ball

reflecting the Y-axis positions of the paddle and ball respectively. However, not all

neurons receiving activation fire at the same time due to fatigue. Unless inhibited

by Control, PaddleIn subsequently relays the activation to Paddle. Control is a

means of externally controlling the agent’s vision, that blinds it of the paddle’s

position during testing. The purpose of the control mechanism is explained in the

next section. In essence, neural firing in these subnets, and the CAs that form in

Paddle and Ball are representative of the vertical positions of the paddle and ball

respectively.

5.3.5 Simulation

In the simulation, the agent has two different training modes—human training and

self training. After either of the training modes, the agent is left to play the game

autonomously, and the gameplay is recorded. In both training scenarios, learning

is driven entirely by visual stimuli. Initially, synaptic strengths of neurons in

subnets representing the agent’s associative memory, Paddle and Ball, are weak.

As explained in the previous section, during training, firing neurons in Paddle and

Ball reflect the Y-axis positions of the paddle and ball respectively. Prolonged co-

firing of these neurons lead to the gradual formation of CAs in their corresponding

subnets, and the inter-subnet association of CAs representing the paddle and ball

in Paddle and Ball when the ball is close to the paddle, that is, when the Y-axis

positions of the paddle and ball are close to each other.

Figure 5.12 shows an example of such an instance, where blackened areas
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in PaddleIn, Paddle, and Ball show neural firing from visual stimuli representing

Y-axis positions of the paddle and ball. In Paddle and Ball, the co-firing of

neurons leads to CA formation. The dashed arrows show how the visual stimuli

excite neurons, and the dotted arrow connecting Paddle and Ball shows associative

learning via co-activation of CAs.

Vision PaddleIn Paddle Ball

Figure 5.12: Learning in the Pong model’s subnets

As the neural firing in Paddle and Ball shift based on the positions of the

paddle and ball in the environment, depending on the extent of the movement, CAs

representing them overlap. For instance, if the paddle is moved up one position, the

CA learnt representing the current position will overlap with the antecedent CA

that represents the previous position. Depending on the movement of the paddle

and ball, a number of CAs representing their Y-axis positions form, overlapping

with local CAs representing neighbouring positions. Thus, the formation of CAs

representing the vertical positions of the paddle and ball involve the amalgamation

of positions that are close to each other.

While position CAs in Paddle and Ball have strong associations with their

neighbouring CAs via massive overlaps, inter-subnet associations between CAs de-

pend on the position of the paddle in relation to the ball. During human training,

if the human player constantly moves the paddle in such a way that it always

avoids the ball by moving away from the approaching ball, the associations be-
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tween the position CAs in Paddle and Ball will reflect these erratic moves. For

example, the paddle positioned at the top when the ball is at the bottom. This

is because associations between inter-subnet CAs in the model are driven entirely

by co-activation which further depends on the vertical positions of the paddle and

ball in the environment.

In addition, if there is no human input, the agent moves the paddle by

itself depending on the activity in Paddle. Since Paddle is a one to one mapping

of the paddle area in the environment, the activity of firing neurons in Paddle

is averaged, and the paddle is moved to the Y-axis position in the environment

corresponding to the most active region in Paddle. If there is no activity in Paddle,

the paddle stays idle. However, if for instance, a group of neurons near the top

of Paddle are firing due to recurring activity in a CA, the agent moves the paddle

to the corresponding position in the environment. This is a cyclic process, as

the paddle is moved depending on the activity in Paddle, and the position of the

paddle in the environment in turn reflects neural activity in Paddle via Vision.

When the agent learns gradually, the CAs formed as a result in Paddle may inhibit

weaker activity, thus making the process dynamic.

When the paddle and the ball move away from a particular position, the

neural activity in Paddle and Ball shift accordingly. As this happens, CAs of neu-

rons receiving external stimulation from Vision representing the current position

may suppress some of the previously active CAs. By the anti-Hebbian learning

rule, synaptic strength between active CAs and inactive CAs are weakened. For

example, excitatory neurons in Paddle will have stronger connections with neu-

rons in the immediate vicinity than neurons at a distance. Similarly, neurons at

a distance may receive inhibition from a group of firing inhibitory neurons. Ac-

tivation from reverberating CAs representing the current position of the paddle

may spread to overlapping regions forming larger CAs. That is, multiple Y-axis

positions of the paddle close to each other may combine to form CAs that repre-
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sent intermediary positions via spreading of activation. This process creates CAs

representing new positions, or generalising from previously learnt positions.

As there is a considerable amount of randomness in the initial network

topology in both training scenarios, and the game physics, the simulation was run

20 times in total, 10 times under each training scenario. Each trial lasted five

minutes in simulated time (30,000 cycles). In the human training mode, a human

played the game for a minute (6000 cycles) prior to testing. The two training

modes and their outcomes are discussed in the subsections below, and the results

and findings in Section 5.3.6.

Human training

In the human training mode, the paddle is controlled via keyboard input by a

human player using the up and down keys. As the game progresses, the player

moves the paddle in accordance with the ball with the goal of hitting it. Since there

is two way learning between Paddle and Ball, recurrent activation from Vision

drives the formation and associations of CAs in these subnets. This essentially

encodes the player’s action of moving the paddle in relation to the ball, and hitting

the ball by aligning the paddle to it. As explained in the previous section, CAs

in both subnets are continuous, overlapping with antecedent and precedent CAs,

representing the continuity of the movement of the paddle and the ball.

CA formation and association in the subnets depend on the player’s be-

haviour. Consistent behaviour reinforces certain CAs and associations between

them while weakening the associations between certain inactive CAs. Similarly,

if the player’s behaviour is erratic, the encoded moves may reflect this behaviour.

Thus, the agent observes the player play and learns from the player’s moves. Since

learning is highly dependent on the nature of the moves, to some extent, the agent

encompasses the gameplay behaviour of the human player.

Human training lasts a minute in simulated time, after which, the agent
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is tested for six minutes. Control inhibits PaddleIn so that the visual stimuli

from Vision representing the position of the paddle in the environment is not

relayed to Paddle. That is, the agent is blinded to the paddle’s position in the

environment so that it has to recollect the paddle’s position in relation to the ball

from its learnt internal states. As the ball moves around in the environment, it

continues to elicit neural activity in Ball. This activates CAs learnt in Ball, that

in turn activate CAs in Paddle to which they are associated. Activation of CAs

in Paddle makes the agent move the paddle to the corresponding position in the

environment. As CAs in Paddle and Ball are continuous, overlapping, and have

inter-subnet associations, Paddle receives constant activation from CAs in Ball

that in turn translates to the agent moving the paddle in the environment. This

causes the agent to move the paddle in accordance to the ball in real time, hitting

it, depending on the accuracy of the moves learnt during training. Since a reward

mechanism is absent, it is possible for erratic training to reinforce flawed game

moves.

Figure 5.13 shows the number of hits and misses by the agent over ten

trials. The number of misses are small compared to the number of hits as a result

of supervised training by the human player. Moreover, since the number of moves

possible in the training time of two minutes is small, the agent performs well in

the novel situations it encounters in the following six minutes of testing, supported

by emergent generalisation.

Self training

In the self training mode, the agent acquires game moves on its own. Initially,

as there is no human intervention or pre-existing memory, the agent remains qui-

escent, not moving the paddle. For the agent to learn the game moves, it has

to perceive the paddle’s position relative to the ball. So, a simple vision control

mechanism regulates the vision so that the agent only perceives the position of the
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Figure 5.13: Pong agent’s game score in human trained gameplay

paddle when the ball approaches it. For this, Control inhibits PaddleIn so that

visual stimuli from Vision representing the paddle is not relayed to Paddle.

When the moving ball crosses the paddle’s Y-axis field (Figure 5.10), due

to the connectivity of Vision to Paddle via PaddleIn, Vision sends neural activa-

tion to Paddle, perceiving the ball in place of the paddle. This sudden activity

in Paddle makes the agent move the paddle to the corresponding position in the

environment. Then, inhibition from Control is released, enabling the agent to vi-

sually perceive the position of the paddle in relation to the position of the ball.

This co-firing of neurons in Paddle and Ball lasts for 50 cycles before Control

shuts of visual perception again. This is a symbolic mechanism, where control is

externally excited so that its inhibitory neurons inhibit PaddleIn, preventing the
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visual stimuli from being relayed to Paddle. Since the ball is continuously moving,

it then bounces off the point of impact on the wall on the paddle’s side, where the

paddle currently is. This process repeats every time the ball crosses the paddle

area, causing the paddle to move to the position of impact, triggering learning via

co-firing of neurons in Paddle and Ball, leading to the eventual formation of CAs.

Gradually, the agent learns enough positions so that the approaching ball elicits

activity in learnt CAs before crossing the paddle area, making the agent move the

paddle to the particular position before the approaching ball, hitting it. Thus,

with a simple mechanism of relative learning, the agent acquires the game moves

autonomously.

There is no separate test in the self training mode, as learning and playing

are continuous. The agent learns and plays at the same time, improving with time.

Figure 5.14 shows the score distribution of the agent across ten trials. Unlike the

small number of misses in the human training mode, the percentage of misses

compared to the hits are significant in each of the trials. This is because learning

in self training mode is driven entirely by visual environmental feedback triggered

by the misses when the ball crosses the paddle’s Y-axis field and hits the wall.

Figure 5.15 shows the progression of scores over an example self training

trial, where the dots indicate when hits and misses occurred. Initially, the number

of misses are greater than the number of hits, but the agent learns from the

misses and the number of successful hits quickly surpass the number of misses.

This growth is drastic, as the agent only needs to learn a few moves, from which

generalisation emerges that further enables the agent to cope with novel situations.

5.3.6 Discussion

The previous section described the two different types of training in the model

and their results. Overlapping associations between positions of the paddle and
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Figure 5.14: Pong agent’s game score in self trained gameplay

ball learnt by the agent are dynamic, and change over time. The agent, driven by

visual stimuli, is able to play the game reasonably well. In both training scenarios,

the number of successful hits are significantly higher than the number of misses

(Figure 5.13 and Figure 5.14).

Overlapping CAs formed in Paddle and Ball are continuous. Figure 5.16

shows the visualisation of Paddle at different instances after an example human

training session. Each panel in the figure is a full representation of the state of

Paddle, where colour gradients indicate activation levels of neurons in the subnet

relative to its state. The states were recorded when at least 50 neurons fired in

Paddle due to internal activation from associated CAs in Ball, at least 10 cycles

apart, capturing the neural activation associated with continuous movement. It
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Figure 5.15: Progression of the Pong agent’s game score during self trained game-

play

can be seen that after t = 6061, this criteria was met only at t = 6239. This may

have been due to the ball moving away to a certain position in the environment

that was not learnt previously, before coming back to a previously learnt position

close to that as t = 6061. Since the activation is internal, invoked by Ball, they are

CAs. The figure shows activation spreading and overlapping with neighbouring

regions, indicating physical overlaps between CAs. Due to their varying levels

of overlap and highly dynamic nature, it is difficult to identify distinct CAs or

approximate their physical boundaries in the subnet. These CAs represent learnt

positions of the paddle in the environment in relation to the ball. The spreading

of activation from CA to CA gives rise to generalisation effects. For instance, if
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A, B, and C respectively are three immediate consecutive positions, and the agent

has learnt the positions A and C, the spreading of activation between A and C as

the paddle moves in relation to the ball may cause them to overlap, giving rise to

an intermediate CA representing B in the process.

Figure 5.17 is a similar visualisation where the recorded states are at least

200 cycles apart. Unlike Figure 5.16 where movements are successive and activa-

tion is local, the figure shows the ball at arbitrary positions in the environment.

The regions of activation are spread out and overlapping, where the most active

neurons may represent the current position of the ball. For instance, at t = 7774

and t = 7974, the activation is spread over a large region, encompassing multiple

positions. This indicates physical overlap between multiple CAs, where new CAs

may have formed. If there was a position that was not learnt during training, this

overlap may cause neighbouring positions to be “generalised” into a previously

unseen position, that is, result in the formation of intermediate CAs. In the game,

the agent moves the paddle depending on such activity in Paddle.

As mentioned in the introduction, the behaviour of neurons in Paddle

resemble hippocampal place cell CAs, whereby activation of CAs in the subnet

reflect the position of the paddle in the environment. It has been shown that the

activation patterns of place cells in rats represent their allocentric positions in

the environment, where activity shifts in relation to their movements [Dragoi and

Buzaski, 2006; Leutgeb et al., 2005]. In such cases, activity is localised to a region

representing a minimal, scaled down version of the perceived environment. This is

similar to the shifting of CA activations in Paddle (shown in figures 5.16 and 5.17),

where Paddle represents the environment, and the region of activation corresponds

to the vertical position of the paddle in the environment. In the model, Paddle

only accounts for the size of the environment and Y-axis positions, where as place

cells are thought to account for various factors such as size of the environment,

orientation, trajectory, and multi-dimensional spatial positions. In addition, the
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size of Paddle is fixed in the model, unlike place cells that seem to dynamically

account for environments of varying dimensions.

Paddle does not represent the agent’s self-position, as the agent is exter-

nal to the game environment. However, it is reasonable to consider Paddle as

the agent’s place cell mechanism, as there is evidence suggesting that place cells

in humans encode their spatial positions even when interacting within a virtual

environment [Doeller et al., 2010]. There is also evidence suggesting that place

cell activations may be continuous and overlapping, and learning and recollection

in them may also be continuous where new information may be added to already

learnt representations, resulting in the emergence of intermediate representations

[Leutgeb et al., 2005]. The model shows this behaviour, whereby continuous learn-

ing results in the merging of new representations of positions with existing repre-

sentations, causing intermediate positions to emerge, that then aid the agent in

gameplay.

In conclusion, the model provides insights into the dynamics of overlapped

encoding of associative memories. The results support the view that generalisation

may emerge from the integration and overlap of a new representation with exist-

ing representations [Shohamy and Wagner, 2008]. It unifies overlapped encoding

of CAs, emergence of generalisation from such overlapping memories, and some

behavioural aspects of hippocampal place cells—processes that have strong neu-

robiological and neuropsychological underpinnings—into a single system. With

an interactive game playing agent that learns and plays the game well, the model

demonstrates the aforementioned processes and their proposed nature. Moreover,

the agent producing novel behaviour is an interesting model of AI. While it is not

a definitive representation of the processes, it is intriguing nonetheless, and like

the other experimental models, serves as an impetus for further research.
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Figure 5.16: Visualisation of activity in Paddle during continuous movement of

the ball
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Figure 5.17: Visualisation of activity in Paddle during arbitrary movement of the

ball
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5.4 Natural language disambiguation with an as-

sociative memory of semantic hierarchies

The models described in the previous sections concerned neurobiological and psy-

chological processes. The model described in this section is the CA based imple-

mentation of a machine learning task in natural language processing—disambiguation

of prepositional phrase (PP) attachment ambiguity [Hindle and Rooth, 1993] in

the English language. The model is based on prior work in machine learning

[Nadh and Huyck, 2009]. It was conceived to test the computational capabilities

of neurobiologically plausible CAs, and to evaluate how a neural approach may

work for certain machine learning tasks, in this case, natural language processing.

The network in the model is relatively large with over 300,000 neurons,

as it has to accommodate a large amount of real world data. As a result, compu-

tational limitations restricted development. For instance, the number of outgoing

inter-subnet synapses per neuron had to be restricted to 90 to cope with memory

constraints. The model also required about eight hours on average to complete a

full simulation on a reasonably powerful personal computer. Derivation of suitable

network parameters for the model was made difficult by this long time window. As

a result, unlike the previous models, the development ended up spanning many

months. Eventually, a relatively good set of parameters was derived and the

model was able to resolve the PP attachment ambiguity better than many known

machine learning models, suggesting that a neural approach may benefit many

similar machine learning tasks. More importantly, the results show the viability

of CAs as a general purpose tool for computational problems. The PP attachment

ambiguity in general, and the model are described in the following subsections.
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5.4.1 PP attachment ambiguity

Semantic and syntactic ambiguities are important challenges in natural language

processing. Such ambiguities make parsing of text into symbolic representations

difficult. The PP attachment ambiguity is such a problem. In the English lan-

guage, PP attachment ambiguities arise when a PP follows a verb phrase (VP)

and a noun phrase (NP) [Hindle and Rooth, 1993]. A canonical example is the

sentence “I saw the girl with the telescope” (Example 1). Here, the phrases saw

(VP), the girl (NP), and with the telescope (PP) may be combined in two ways,

resulting in two different semantic interpretations as listed below. These two cases

are also illustrated in Figure 5.18.

A. The PP can attach to the VP, resulting in the interpretation meaning the

girl was seen through the telescope. In this attachment, the telescope is the

instrument of the verb saw—(VP saw (NP the girl) (PP with the telescope)).

B. The PP can attach to the NP resulting in the semantic interpretation the

girl possessing the telescope was seen—(VP saw (NP the girl (PP with the

telescope))).

VP (saw)

NP (the girl) PP (with the telescope)

VP (saw)

PP (with the telescope)

NP (the girl)

A) PP Attached to VP B) PP Attached to NP

Figure 5.18: An example of PP attachment ambiguity
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An example for a case where a human annotator may consider PP attach-

ing to the NP “correct” is the sentence “I saw the girl with the flowers”. Here, it

makes sense for the PP to attach to the NP meaning that the girl possessing the

flowers was seen, as unlike in Example 1, flowers are not typically used as instru-

ments of seeing. Additionally, attachment decisions can be influenced by factors

like context, making it impossible to disambiguate all cases of the ambiguity from

sentences on their own.

Many machine learning models attempt to resolve the PP attachment

ambiguity using quadruples of headwords of ambiguous sentences—(v n1 p n2),

where v is the head verb, n1 is the head noun of the NP, p is the preposition,

and n2 is the head noun of the PP. In Example 1, the quadruple is saw girl with

telescope. While such quadruples may aid in efficient disambiguation, even a single

misattachment decision may result in multiple parsing errors [Lin, 1998].

The quadruples of ambiguous sentences are usually obtained from stan-

dard corpora, as is the data used in the model described. Previously seen quadru-

ples can be resolved relatively well, but sparseness of real world data in general

[Atterer and Schütze, 2007] reduces the possibility of frequent occurrences of highly

similar quadruples. So, many machine learning models adopt methods of gener-

alising from training data. The model described in this section is the neural CA

based implementation of prior work [Nadh and Huyck, 2009] that used a method

of measuring semantic similarities between quadruples for disambiguation. Both

methods work on the assumption that semantically similar sentences should have

similar PP attachments. The higher the similarity, the higher the probability of

having similar attachments. In the previous work, semantic similarity between

quadruples was calculated by an algorithm that counted the frequency of common

terms describing individual words in a quadruple in semantic trees obtained from

a lexical dictionary.
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The model described here achieved an average disambiguation accuracy

of 84.56% (standard deviation of 2.85) over six trials, and the highest accuracy of

88.33% in a single trial. The results are on par with the original machine learning

model, and other known methods of PP attachment ambiguity disambiguation.

The results suggest that neurobiologically plausible CAs are powerful tools for

performing computational tasks usually limited to machine learning systems.

5.4.2 The model

In the model, ambiguous quadruples extracted from a large training set—the Penn

Treebank (PTB) corpus [Marcus et al., 1993]—and sense hierarchies of words in the

quadruples from the semantic dictionary WordNet [Miller, 1990] are encoded in a

network as CAs, along with their correct attachment decisions. Over time, large

overlapping CAs representing semantic relationships between training quadruples

emerge, that are then used to classify novel quadruples in a test set. The PTB

and WordNet datasets are further discussed in Section 5.4.3.

As mentioned earlier, the derivation of a suitable set of parameters for

the network was complicated by the computational constraints imposed by the

size of the network. The behaviour of the ANN at such a scale had never been

tested. For deriving parameters, the training set itself was divided into a smaller

training set and a test set (50% – 50%). The model was trained and tested on

these two smaller test sets repeatedly for the purpose of parameters derivation so

as to avoid biasing results from the actual test. The parameters had to be adjusted

to enable gradual learning in the large network over prolonged periods of time, as

the dataset is large, requiring prolonged learning.
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5.4.3 Datasets

The model learns from examples with known attachment decisions from a training

set. These are extracted from the Wallstreet Journal subset of the PTB corpus.

The PTB is an English corpus annotated with part-of-speech [Charniak, 1997]

and syntactic structures by lexicographers [Marcus et al., 1993]. Sentences in the

corpus are represented in a standard parenthesised tree structure as shown in the

example in Figure 5.19.

(S

(NP (PRP I))

(VP (VBD saw)

(NP (DT the) (NN girl))

(PP (IN with)

(NP (DT the) (NN telescope))))

(. .)

)

Figure 5.19: Annotated form of the sentence I saw the girl with the telescope

Verb attachment Noun attachment

(VP (*) (VP (*)

(NP *) (NP *

(PP-* (*) ( PP-* (*)

(NP (*)) (NP (*)) )

) )

) )

Figure 5.20: Annotated tree structure of sentences with PP attachment ambiguity

A simple recursive decent parsing algorithm creates quadruples from sen-
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tences extracted from the corpus of the forms shown in Figure 5.20, where * is a

wildcard representing one or more tagged items. For the one verb and two nouns

in a quadruple, word sense hierarchies are obtained from WordNet. Word sense

hierarchies are lexical trees of sequences of hypernyms where each subordinate

sequence or synset is a set of synonyms of the superordinate word. The model

trains on the word sense hierarchies along with their parent quadruples. Figure

5.21 shows an example sense hierarchy of the noun telescope. In the example,

sequences are generic terms for the words in their immediate superordinate posi-

tion, for instance, scientific instrument ← instrument. However, words may have

multiple sense hierarchies, for instance, the word bat may refer to the animal, or a

wooden club used in certain games. In such cases, only the first sense hierarchy is

used and the rest is discarded, as WordNet orders entries based on the frequency

of their occurrence across multiple corpora [Lee et al., 2000]. While this may yield

false positives in some cases, the probability of the first sense being correct remains

high due to the frequency heuristic.

telescope, scope

=> magnifier

=> scientific instrument

=> instrument

=> device

=> instrumentality, instrumentation

=> artifact, artefact

=> whole, unit

=> object, physical object

=> physical entity

=> entity

Figure 5.21: Word sense hierarchy of the noun telescope
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The quadruples thus extracted from the PTB corpus are divided into a

training set and a test set as shown in Table 5.5. Table 5.4 shows some example

quadruples from the dataset.

Table 5.4: Example quadruples from the PTB

v n1 p n2 attachment

closing port for time VP

filed brief in appeal VP

admit victory in congress NP

regards year as period VP

terminated negotiations for purchase NP

Table 5.5: Some statistics of the dataset extracted from PTB

Total sentences processed 49,208

Sentences with PP attachment ambiguity 7810

Quadruples in the training set 4810

Quadruples in the test set 3000

Training quadruples with verb attachments 3847

Training quadruples with noun attachments 963

5.4.4 Network properties

The model has a large network partitioned into four input subnets Verb, Noun1,

Preposition, and Noun2 that encode the four individual components of quadruples,

v, n1, p, and n2 respectively. Two attachment subnets, VerbAttach and NounAttach

encode the attachment decisions of training quadruples. Figure 5.22 shows the
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gross connectivity of the subnets. The arrows represent random, low weight exci-

tatory inter-subnet connections. Every neuron in the four input subnets connects

to 90 random neurons in the corresponding attachment subnet, totalling to over

18 million inter-subnet synaptic connections, hence the aforementioned computa-

tional constraints.

Noun1Verb Preposition Noun2

VerbAttach

NounAttach

Figure 5.22: PP attachment disambiguation model’s network structure

Table 5.6 shows the network parameters for the subnets. The number of

neurons in each subnet is derived from the number of words in the full training set.

Each word in a quadruple, v, n1, p, and n2, and all words in their sense hierarchies

are designated 20 neurons each in their corresponding input subnets. The size

of the two attachment subnets is determined based on the maximum number of

attachment decisions of either attachments in the training set. As 79.9% of the

training quadruples have verb attachments, the maximum size of both subnets

are based on this figure, where the attachment decisions of training quadruples

are assigned 10 neurons each. Hence, a large number of neurons in NounAttach

never participate in any activity, as only 20.1% of the training quadruples have

noun attachments. Still, both subnets have the same number of neurons in order

to reduce learning bias. If NounAttach had fewer neurons, its connection density

would be significantly higher than that of VerbAttach, which would result in the

activation of a large number of its neurons, affecting the model’s behaviour. How

neurons are designated to words in the training set is discussed in the next section.
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The specifics of inter-subnets connections are listed below.

Every excitatory neuron in Verb connects to 90 random neurons in VerbAttach

with a synaptic weight of .08

Every excitatory neuron in Noun1 connects to 90 random neurons in NounAttach

with a synaptic weight of .08

Every excitatory neuron in Preposition connects to 90 random neurons in Ver-

bAttach and NounAttach with a synaptic weight of .08

Every excitatory neuron in Noun2 connects to 90 random neurons in VerbAttach

and NounAttach with a synaptic weight of .08

Table 5.6: PP attachment ambiguity disambiguation model’s network parameters

Verb Noun1 Prep Noun2 VA, NA

Learning rate λ 0.2 0.2 0.2 0.2 0.1

Threshold θ 4.0 4.0 4.0 4.0 3.5

Axonal median χ 0.5 0.5 0.5 0.5 0.5

Fatigue f 0.6 0.6 0.6 0.6 0.6

Fatigue recovery fr 0.8 0.8 0.8 0.8 0.8

Decay δ 1.2 1.2 1.2 1.2 1.2

Saturation B 20 20 20 20 20

Inhibitory neurons ι 0.2 0.2 0.2 0.2 0.25

Neurons N 2666×20 4746×20 54× 20 5076×20 3847×10

5.4.5 Simulation

Initially, every v, n1, and n2 of all the training quadruples, and words from their

individual sense hierarchies obtained from WordNet are designated 20 neurons
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each in Verb, Noun1, and Noun2 respectively. Similarly, each unique preposition

p is designated 20 neurons in Preposition. The subnets each only have a single

instance of a word even if it occurs multiple times across different quadruples.

However, the words in Noun1 and Noun2 are not common, as they represent the

collection of every unique n1 and n2 distinct from each other, respectively. The

designation of neurons is serial, where the first 20 neurons in Verb represents the

first v, the second 20 represents the first word in its sense hierarchy, and so on

for every word in its sense hierarchy and every v. Thus, the subnets represent

a “bag of words” including every word and its sense hierarchy of all quadruples

in the training set. This serial designation of neurons does not encompass the

relationships between words in sense hierarchies. For example, initially, there is

no physical overlap between the neurons that represent telescope and magnifier

until the associations are acquired via gradual learning during training.

The simulation consists of two modes, a training mode and a test mode.

In the training mode, every training quadruple is presented to the network for

100 cycles each. Neurons designated to each of the words v, n1, and n2, words

in their sense hierarchies, and the p of a quadruple are externally stimulated in

their corresponding subnets. This involves setting the activation levels of the

designated neurons to values > θ of their corresponding subnets. Similarly, a set

of ten neurons representing the attachment decision of the quadruple is externally

stimulated in VerbAttach or NounAttach, depending on the attachment. The order

of this set is assigned serially. For example, for the first quadruple in the training

set with a verb attachment, the first ten neurons in VerbAttach are stimulated,

for the second, the next ten and so on for every quadruple in the training set.

The co-firing of neurons in the four input subnets and the correspond-

ing attachment subnet gradually result in the formation of CAs representing the

training quadruple across them. Initially, in the input subnets, CAs representing

individual words are formed. Via gradual learning, these CAs overlap with CAs
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representing similar words in other quadruples via shared words in their sense hi-

erarchies. For instance, CAs representing boy and girl in Noun1 may share a large

number of neurons, as their sense hierarchies share many common words—for ex-

ample (girl, individual, person, someone . . . ) ∩ (boy, individual, person, someone

. . . ).

Learning in the model sees the emergence of CAs with associations via

overlap within subnets and associations via synapse across subnets. Quadruples

with similar words have overlapping representations in the input subnets. The

CAs and their associations may change as new quadruples are learnt. If a training

quadruple with a verb attachment is semantically similar to a previously learnt

quadruple with the same attachment, its constituent words in the four input sub-

nets may activate the previous quadruple’s CA in VerbAttach during external

stimulation while learning. This may result in the two CAs in VerbAttach forming

associations. Similarly, quadruples with semantic similarities may have CAs in

the attachment subnets with associations varying based on their similarities. As

a result, CAs in VerbAttach and NounAttach may become active in response to

activation in the four input subnets representing input quadruples, before the ten

corresponding neurons corresponding to the attachment decision are externally

stimulated.

The model classifies novel inputs based on this behaviour, where attach-

ment decisions of novel inputs are decided based on the activity elicited by them

in the two attachment subnets. If a novel quadruple presented to the input sub-

nets excites more neurons in VerbAttach than NounAttach, it is considered to

have a verb attachment and vice versa. When a novel input activates CAs in ei-

ther of the attachment subnets, it is the result of associations between previously

learnt quadruples with semantic similarities. That is, if many quadruples similar

to a novel quadruple have verb attachments, the model assumes that the novel

quadruple has the same attachment.
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After training, the model is tested by presenting 3000 novel quadruples

from the test set. The four words v, n1, p, and n2 of each quadruple are presented

to the corresponding input subnet by externally stimulating their corresponding

neurons in the subnet for 100 cycles each. The number of neurons firing during

this period in VerbAttach and NounAttach due to the activation propagated by

the inputs are recorded, and the attachment decision is attributed to the subnet

with the largest number of active neurons. The results are discussed in the next

section.

5.4.6 Results and discussion

The model attained an average resolution accuracy of 84.56% (standard deviation

of 2.85) over six trials. A particular trial yielded the highest accuracy of 88.33%,

which is better than the result from the prior work the model is based on [Nadh

and Huyck, 2009]. However, the statistical significance of this figure could not be

verified due to the aforementioned computational and time constraints, and hence,

it could be an outlier. All test quadruples disambiguated incorrectly have noun

attachments, as VerbAttach has the largest number of active neurons in most cases.

As repeated co-activation of CAs increase the strength of their associations, the

common verbs and nouns in the large number of quadruples with verb attachments

result in reinforcement of CAs representing them, inhibiting weak or sparse activity

in their subnets. Since repeating words in the four input subnets have the same

set of neurons designated to them, CAs representing repeating verbs and nouns

have stronger learnt connections to VerbAttach due to the sheer volume (79.1%)

of quadruples with verb attachments. The results are presented in Table 5.7.

The CAs learnt across different subnets are large, and overlap with other

CAs extensively and change dynamically over the course of learning. During

training, a quadruple presented later may be similar to a quadruple learnt earlier.

In such a case, the CAs of the newly learnt quadruple may overlap with the CAs
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Table 5.7: PP attachment disambiguation model’s results

Attachment Quadruples in the test set Correct predictions Accuracy

Verb 2416 2416 100%

Noun 584 234 40.06%

Total 2650 3000 88.33%

of the earlier quadruple, affecting other quadruples that may have been associated

to it in the process. Thus, the effect of CAs of different quadruples on one another

is highly dynamic. Table 5.8 shows the Pearson’s correlation coefficients of three

different VerbAttach states during training. Pearson’s correlation is a measure of

linear dependence between two variables. Here, it shows the similarity between

different network states, where states are represented by the neurons firing at

particular instances. If two states have a high similarity coefficient, it means that

many of the same neurons fired at both instances, indicating the similarity of

different CAs that were active at those instances. Since these are training states,

external stimulation contributes substantially to the activity in the subnet. The

three states shown in the table are at cycles t = 2250, t = 2750, and t = 5150

while learning the quadruples put stock on list, put touch on compromise, and enter

venture in april respectively. These example quadruples have verb attachments

and were selected to illustrate how CAs representing different quadruples may

differ.

Table 5.8: Pearson’s correlation coefficient of different states of VerbAttach

put stock on list put touch on compromise 0.52

put touch on compromise enter venture in april 0.11

enter venture in april put stock on list 0.1
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The higher similarity coefficient of put stock on list and put touch on com-

promise is indicative of the underlying semantics. Both quadruples roughly trans-

late to the abstract form put something on something. On the other hand, enter

venture in april is semantically different compared to the other two quadruples,

and hence the low similarity coefficients. Interestingly, put touch on compromise

has a higher similarity to enter venture in april than put stock on list. This may

be due to a number of reasons, from the learning time window to similarities be-

tween previously learnt quadruples. The similarities may also change as learning

progresses and new quadruples are introduced. This is how the semantic similarity

dynamic of the quadruples, encoded across the network, enable classification of

novel quadruples. While this is not a definitive measure of the learning dynamics,

it is an indicator of the superficial behaviour of the model.

In the real world, context influences attachment decisions. However, like

many models [Ratnaparkhi et al., 1994; Stetina and Nagao, 1997; Toutanova et al.,

2004; Zhao and Lin, 2004], the model described works in the null context. Even

though no system working in the null context can ever resolve all instances of

PP attachment ambiguity, null context models continue to produce good results.

For instance, Ratnaparkhi et al.’s [1994] maximum entropy model used lexical

information within verb phrases obtained from the PTB WSJ corpus and no ex-

ternal semantic knowledge achieved an accuracy of 81.6%. Stetina and Nagao’s

[1997] decision tree and semantic dictionary method for word sense disambigua-

tion attained an accuracy of 88.1%. A Markov chain random walk model that

used WordNet synsets resolved the PP attachment ambiguity with an accuracy of

87.5% [Toutanova et al., 2004]. Nakov and Hearst [2005] used the world wide web

as a training set for disambiguation achieving an accuracy of 83.82%. These results

are presented in Table 5.9, even though it is difficult to conduct a fair comparison

of different disambiguation systems due to the lack of a standard dataset.

The model, like many models, relies on external semantics for disambigua-
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Table 5.9: Comparison of results from the PP disambiguation model with prior

work

Model Result

Maximum Entropy Model [Ratnaparkhi et al., 1994] 81.6%

Decision trees and WordNet [Stetina and Nagao, 1997] 88.1%

Nearest neighbour method [Zhao and Lin, 2004] 86.5%

Markov chain random walk model [Toutanova et al., 2004] 87.5%

Disambiguation with a semantic dictionary [Nakov and Hearst, 2005] 83.8%

Semantic hierarchies for lattice construction [Nadh and Huyck, 2009] 88.1%

Semantic hierarchies as overlapping CAs

Average 84.56%

Highest 88.33%

tion. It combines this data—semantic hierarchies from WordNet—with examples,

and uses it as a large semantic dictionary. It represents semantic data as CAs in

a large network, unlike symbolic semantic systems used in other machine learn-

ing models such as the prior work this model is based on [Nadh and Huyck,

2009]. Groups of neurons represent individual words in the semantic hierarchies.

While this representation flattens the hierarchies losing the hierarchical relation-

ships in the process, some forms of the relationships are gradually acquired via

Hebbian learning. Due to certain characteristics of CAs—spreading of activation,

overlapping, and inhibition—as seen in previous models, these relationships may

not be as discrete or accurate as in a symbolic model. Still, the model is able

to perform the task well with its neurobiologically plausible CA based associa-

tive memory. Curating the dataset manually, for example, reducing jargon and

acronyms in quadruples for which there are no semantic hierarchies in WordNet,

may produce better results. However, the goal of the model is to explore large CA

based associative memories and not specifically scrutinise the natural language
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processing task at hand. The results suggest that such a neural approach may be

better for tasks in AI usually restricted to symbolic machine learning systems—at

least, some natural language processing tasks—hinting at interesting prospects,

and demonstrating the versatility of the CA model.

5.5 Chapter summary

This chapter described the four models developed in the thesis, namely, emergent

context sensitivity in CAs; spatial cognitive mapping with CAs embodied in a

virtual agent; emergence of novel behaviour in CAs in a self learning game playing

agent; and prepositional phrase attachment ambiguity resolution with CAs, a

natural language disambiguation task. It presented in detail, the models, the

neurobiological concepts relating to them, and their findings, highlighting different

capacities of CAs. The next chapter summarises the findings from the models,

their novel contributions, and briefly discusses the prospects for future work.



Chapter 6

Discussion and conclusion

This thesis has presented a body of work aimed at exploring and construing the na-

ture of associative memory and complex processes that emerge from it—processes

that constitute intelligence. The different experimental models described in the

thesis explored different aspects of associative memory. Moreover, all models are

based on the CA, a construct with strong neurobiological underpinnings. To-

gether, the models point at a unified CA based associative memory model with

many interesting capabilities. In addition, many of the models described resem-

ble observed neurobiological and psychological processes in the brain. The work

thus highlights the benefits of a neurobiological approach to modelling in AI, in

particular, demonstrating the CA model to be a powerful candidate.

The results from the models are novel, and make contributions to the

understanding of associative memory, the nature of CAs, and some aspects of AI

in general. The outcomes, with an emphasis on the possible novel contributions,

are summarised in the following section.

6.1 Summary of findings

Context sensitivity can emerge from an associative memory, wholly from the

underlying characteristics of CA formation and association. The model (Sec-

tion 5.1) showed how memory retrieval is affected by context, where the

activation of CAs representing different concepts is influenced by CAs repre-

senting different contexts. This behaviour implicitly emerges from the learnt

associations in the associative memory. The behaviour of the model is similar

113
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to some observations in the brain thought to underlie context sensitivity.

A form of spatial cognitive mapping—landmark based navigation—is pos-

sible with an associative memory of CAs representing various features in

an environment, and the associations between them. The model encodes

episodic and semantic memories, and relies on their sequential activation to

facilitate the navigation of an agent in an environment. The sequential acti-

vation of memories in the model resembles processes in the brain thought to

be involved in landmark based spatial navigation. The model demonstrates

how a process as complex as spatial navigation can be implemented with a

relatively simple CA based associative memory. Having been incorporated

into a more advanced agent, it serves as a prototype for complex spatial

navigation in more advanced systems.

Novel behaviour can emerge from the generalisation of memories in an asso-

ciative memory of overlapping CAs. Generalisation, a fundamental process

constituting intelligence, is shown to implicitly emerge from an associative

memory of overlapping CAs, resembling processes in the brain. In particular,

the similarities of the model with hippocampal place cells thought to under-

lie spatial navigation and associative memory are demonstrated. Based on

these processes, an agent learns to play a game of Pong by observing human

play, or on its own, subsequently producing novel behaviour. The model

serves as a prototype for advanced virtual and mechanical agents that may

need to evolve novelty, a fundamental characteristic of intelligence.

A large overlapping memory of CAs encoding real world data can act as a pow-

erful categoriser and perform a machine learning task. Using the associa-

tions that emerge from the overlapped encoding of large sets of hierarchical

semantic data, the natural language processing model disambiguates sen-

tences with PP attachment ambiguity with an accuracy on par with many
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known machine learning models. The model demonstrates that a neurobi-

ological approach may be beneficial for certain tasks in AI that are usually

limited to machine learning.

The models explored the dynamics of neurobiologically plausible associa-

tive memories with synaptic connections and overlapped encoding of CAs. The

models, with their novel outcomes, have shown that the characteristics of CAs can

inherently give rise to complex phenomena resembling similar low level processes

in the brain, hinting at a unified model of associative memory. Moreover, the

models, in particular the natural language disambiguation model, demonstrate

that the CA model may be a powerful general purpose tool for tasks in AI.

6.2 Final remarks and future work

Like many works, the research presented in this thesis raises interesting questions

and prospects, warranting further investigation. There are many characteristics of

associative memory yet to be understood. For instance, while the models demon-

strated effects of local inhibition among CAs, the brain is thought to have global

inhibitory mechanisms [Garagnani et al., 2009; Rolls, 2007] that affect memory,

such as large scale context effects. Besides, the models do not take into account

the dynamic states a CA can have. This is an important aspect, as variable acti-

vation of CAs may underpin higher processes. If a CA is very active at an instant,

but not as active at another instant, the difference in activation level may have

significant effect on how the CA influences an associative memory.

In the ANN used, a cycle of neural activity is considered to be 10 millisec-

onds in simulated time. However, the models ignore the temporal properties of

firing neurons. In the brain, precise timing of neural firing and similar temporal

properties are important, and are thought to be a mechanism of encoding memo-

ries [Dragoi and Buzaski, 2006; Engel et al., 1991; Kaplan et al., 1991; Wennekers
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and Palm, 2000]. These are characteristics that further investigations into asso-

ciative memories may need to consider. In addition, while the resemblances of

the models with low level neurobiological and psychological processes in the brain

have been highlighted, they need to be evaluated against real world data.

The sections detailing the models each presented a table of network param-

eters to highlight how the parameters differ across models, and how the parameter

values were adjusted to obtain desired behaviour. Many of these parameters such

as fatigue and decay are neurobiologically inspired. It is important to consider

how a set of optimal parameters can be obtained that can unify the differences

across these models and future models.

A better neural framework to succeed the ANN (described in Chapter

4), that is more computationally efficient and may consider some of the above

mentioned characteristics, is being planned. In addition, a model that combines

the dynamics of overlapped encoding of CAs and hippocampal place cells for

performing an advanced cognitive mapping task—a virtual agent in a complex

maze—is being developed.

Ultimately, this thesis is a small contribution to the tremendous task of

comprehending, and one day, creating intelligence. Like many endeavours in the

field of AI, it is a part of continuing work, to which, the magnificence of intelligence

is the impetus.
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Schüz, A. (1998). Neuroanatomy in a computational perspective. In Arbib, M. A.,

editor, The handbook of brain theory and neural networks, pages 622–626. MIT

Press, Cambridge, MA, USA.

Shirvalkar, P. R. (May 2009). Hippocampal neural assemblies and conscious re-

membering. Journal of Neurophysiology, 101(5):2197–2200.



BIBLIOGRAPHY 134

Shohamy, D. and Wagner, A. D. (2008). Integrating memories in the human brain:

hippocampal-midbrain encoding of overlapping events. Neuron, 60(2):378–389.

Smolensky, P. (1987). Connectionist AI, symbolic AI, and the brain. Artificial

Intelligence Review, 1(2):95–109.

Song, X.-H., Hopke, P. K., Fergenson, D. P., and Prather, K. A. (1999). Classifi-

cation of single particles analyzed by atofms using an artificial neural network,

art-2a. Analytical Chemistry, 71(4):860–865.

Spatz, H.-C. (1996). Hebb’s concept of synaptic plasticity of neuronal cell assem-

blies. Behavioural Brain Research, 78:3–7.

Spiers, H. J. and Maguire, E. A. (2008). The dynamic nature of cognition during

wayfinding. Journal of Environmental Psychology, 28(3):232–249.

Squire, L. R. (1992). Memory and the hippocampus: a synthesis from findings

with rats, monkeys, and humans. Psychological review, 99(2):195–231.

Stainslaw Jankowski, Andrzej Lozowski, J. M. Z. (1996). Complex-valued mul-

tistate neural associative memory. IEEE Transactions on Neural Networks,

7(6):1491–1496.

Stetina, J. and Nagao, M. (1997). Corpus based PP attachment ambiguity reso-

lution with a semantic dictionary. In Proceedings of Workshop on Very Large

Corpora, pages 66–80.

Sturz, B. R., Bodily, K. D., and Katz, J. S. (2006). Evidence against integration

of spatial maps in humans. Animal Cognirion, 9(3):207–17.

Tal, D. and Schwartz, E. L. (1997). Computing with the leaky integrate-and-

fire neuron: logarithmic computation and multiplication. Neural Computation,

9(2):305–318.



BIBLIOGRAPHY 135

Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual Review of

Neuroscience, 19(1):109–139.

Tanila, H., Shapiro, M. L., and Eichenbaum, H. (1997). Discordance of spatial

representation in ensembles of hippocampal place cells. Hippocampus, 7(6):613–

623.
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Appendix

Following are the URLs for downloading various models described in Chapter 5.

Emergent context sensitivity in an associative memory (Section 5.1)

— http://nadh.in/research/files/model context.zip

Spatial cognitive mapping with a sequential associative memory in an embod-

ied agent in a virtual environment (Section 5.2)

— http://nadh.in/research/files/model cogmap.zip

Novel behaviour from a massively overlapping associative memory in a game play-

ing agent (Section 5.3)

— http://nadh.in/research/files/model pong.zip

Natural language disambiguation with an associative memory of semantic hier-

archies (Section 5.4)

— http://nadh.in/research/files/model ppca.zip
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